Suppr超能文献

从 2011 年 CSAR 基准测试中使用 smina 进行经验评分中获得的经验教训。

Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise.

机构信息

Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

出版信息

J Chem Inf Model. 2013 Aug 26;53(8):1893-904. doi: 10.1021/ci300604z. Epub 2013 Feb 12.

Abstract

We describe a general methodology for designing an empirical scoring function and provide smina, a version of AutoDock Vina specially optimized to support high-throughput scoring and user-specified custom scoring functions. Using our general method, the unique capabilities of smina, a set of default interaction terms from AutoDock Vina, and the CSAR (Community Structure-Activity Resource) 2010 data set, we created a custom scoring function and evaluated it in the context of the CSAR 2011 benchmarking exercise. We find that our custom scoring function does a better job sampling low RMSD poses when crossdocking compared to the default AutoDock Vina scoring function. The design and application of our method and scoring function reveal several insights into possible improvements and the remaining challenges when scoring and ranking putative ligands.

摘要

我们描述了一种设计经验评分函数的通用方法,并提供了 smina,这是特别优化以支持高通量评分和用户指定的自定义评分功能的 AutoDock Vina 的一个版本。使用我们的通用方法、smina 的独特功能、AutoDock Vina 的一组默认相互作用项以及 CSAR(社区结构-活性资源)2010 数据集,我们创建了一个自定义评分函数,并在 CSAR 2011 基准测试中对其进行了评估。我们发现,与默认的 AutoDock Vina 评分函数相比,我们的自定义评分函数在对接时更能更好地采样低 RMSD 构象。我们的方法和评分函数的设计和应用揭示了在评分和排列可能的配体时,改进和剩余挑战的一些见解。

相似文献

1
Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise.
J Chem Inf Model. 2013 Aug 26;53(8):1893-904. doi: 10.1021/ci300604z. Epub 2013 Feb 12.
2
CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma.
J Chem Inf Model. 2016 Jun 27;56(6):1063-77. doi: 10.1021/acs.jcim.5b00523. Epub 2016 May 17.
3
A New Scoring Function for Molecular Docking Based on AutoDock and AutoDock Vina.
Curr Drug Discov Technol. 2015;12(3):170-8. doi: 10.2174/1570163812666150825110208.
4
Combined Approach of Patch-Surfer and PL-PatchSurfer for Protein-Ligand Binding Prediction in CSAR 2013 and 2014.
J Chem Inf Model. 2016 Jun 27;56(6):1088-99. doi: 10.1021/acs.jcim.5b00625. Epub 2015 Dec 30.
5
CSAR benchmark exercise 2011-2012: evaluation of results from docking and relative ranking of blinded congeneric series.
J Chem Inf Model. 2013 Aug 26;53(8):1853-70. doi: 10.1021/ci400025f. Epub 2013 May 10.
6
Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening.
PLoS One. 2016 May 12;11(5):e0155183. doi: 10.1371/journal.pone.0155183. eCollection 2016.
8
Machine learning optimization of cross docking accuracy.
Comput Biol Chem. 2016 Jun;62:133-44. doi: 10.1016/j.compbiolchem.2016.04.005. Epub 2016 May 4.
10
Evaluation of consensus scoring methods for AutoDock Vina, smina and idock.
J Mol Graph Model. 2020 May;96:107532. doi: 10.1016/j.jmgm.2020.107532. Epub 2020 Jan 13.

引用本文的文献

2
4
A structure-oriented kinetics dataset of enzyme-substrate interactions.
Sci Data. 2025 Aug 26;12(1):1489. doi: 10.1038/s41597-025-05829-5.
9
Affinity and Selectivity of Protein-Ligand Recognition: A Minor Chemical Modification Changes Carbonic Anhydrase Binding Profile.
J Med Chem. 2025 Aug 28;68(16):17752-17773. doi: 10.1021/acs.jmedchem.5c01421. Epub 2025 Aug 13.
10
Qsarna: An Online Tool for Smart Chemical Space Navigation in Drug Design.
J Chem Inf Model. 2025 Aug 11;65(15):7811-7816. doi: 10.1021/acs.jcim.5c00720. Epub 2025 Jul 29.

本文引用的文献

1
Structure-based virtual screening for drug discovery: a problem-centric review.
AAPS J. 2012 Mar;14(1):133-41. doi: 10.1208/s12248-012-9322-0. Epub 2012 Jan 27.
3
Open Babel: An open chemical toolbox.
J Cheminform. 2011 Oct 7;3:33. doi: 10.1186/1758-2946-3-33.
4
Scoring and lessons learned with the CSAR benchmark using an improved iterative knowledge-based scoring function.
J Chem Inf Model. 2011 Sep 26;51(9):2097-106. doi: 10.1021/ci2000727. Epub 2011 Aug 31.
5
CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions.
J Chem Inf Model. 2011 Sep 26;51(9):2115-31. doi: 10.1021/ci200269q. Epub 2011 Aug 29.
7
Surveying implicit solvent models for estimating small molecule absolute hydration free energies.
J Comput Chem. 2011 Oct;32(13):2909-23. doi: 10.1002/jcc.21876. Epub 2011 Jul 6.
8
CSAR benchmark exercise of 2010: selection of the protein-ligand complexes.
J Chem Inf Model. 2011 Sep 26;51(9):2036-46. doi: 10.1021/ci200082t. Epub 2011 Jul 22.
9
FRED pose prediction and virtual screening accuracy.
J Chem Inf Model. 2011 Mar 28;51(3):578-96. doi: 10.1021/ci100436p. Epub 2011 Feb 16.
10
Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets.
J Chem Inf Model. 2010 Nov 22;50(11):1961-9. doi: 10.1021/ci100264e. Epub 2010 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验