Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3191-6. doi: 10.1073/pnas.1218769110. Epub 2013 Feb 7.
Biologically produced alkanes represent potential renewable alternatives to petroleum-derived chemicals. A cyanobacterial pathway consisting of acyl-Acyl Carrier Protein reductase and an aldehyde-deformylating oxygenase (ADO) converts acyl-Acyl Carrier Proteins into corresponding n-1 alkanes via aldehyde intermediates in an oxygen-dependent manner (K(m) for O(2), 84 ± 9 µM). In vitro, ADO turned over only three times, but addition of more ADO to exhausted assays resulted in additional product formation. While evaluating the peroxide shunt to drive ADO catalysis, we discovered that ADO is inhibited by hydrogen peroxide (H(2)O(2)) with an apparent K(i) of 16 ± 6 µM and that H(2)O(2) inhibition is of mixed-type with respect to O(2). Supplementing exhausted assays with catalase (CAT) restored ADO activity, demonstrating that inhibition was reversible and dependent on H(2)O(2), which originated from poor coupling of reductant consumption with alkane formation. Kinetic analysis showed that long-chain (C14-C18) substrates follow Michaelis-Menten kinetics, whereas short and medium chains (C8-C12) exhibit substrate inhibition. A bifunctional protein comprising an N-terminal CAT coupled to a C-terminal ADO (CAT-ADO) prevents H(2)O(2) inhibition by converting it to the cosubstrate O(2). Indeed, alkane production by the fusion protein is observed upon addition of H(2)O(2) to an anaerobic reaction mix. In assays, CAT-ADO turns over 225 times versus three times for the native ADO, and its expression in Escherichia coli increases catalytic turnovers per active site by fivefold relative to the expression of native ADO. We propose the term "protection via inhibitor metabolism" for fusion proteins designed to metabolize inhibitors into noninhibitory compounds.
生物合成的烷烃代表了潜在的可再生替代石油衍生化学品的选择。一种由酰基辅酶 A-酰基辅酶 A 载体蛋白还原酶和醛去甲酰化加氧酶(ADO)组成的蓝细菌途径,通过氧依赖的方式将酰基辅酶 A-酰基辅酶 A 载体蛋白转化为相应的 n-1 烷烃,其中间体为醛(O2 的 K(m)值为 84±9 µM)。在体外,ADO 仅周转了三次,但在耗尽的测定中加入更多的 ADO 会导致额外的产物形成。在评估过氧化物分流以驱动 ADO 催化时,我们发现 ADO 被过氧化氢(H2O2)抑制,表观 K(i)值为 16±6 µM,并且 H2O2 抑制是针对 O2 的混合型。在耗尽的测定中补充过氧化氢酶(CAT)恢复了 ADO 的活性,表明抑制是可逆的,并且依赖于 H2O2,这是由于还原剂消耗与烷烃形成之间的偶联不良所致。动力学分析表明,长链(C14-C18)底物遵循米氏动力学,而短链和中链(C8-C12)则表现出底物抑制。包含 N 端 CAT 与 C 端 ADO 偶联的双功能蛋白(CAT-ADO)通过将其转化为共底物 O2 来防止 H2O2 抑制。实际上,在向厌氧反应混合物中加入 H2O2 时,可以观察到融合蛋白的烷烃生成。在测定中,CAT-ADO 的周转率为 225 次,而天然 ADO 仅为 3 次,与天然 ADO 的表达相比,其在大肠杆菌中的表达使每个活性位点的催化周转率提高了五倍。我们提出了“通过抑制剂代谢进行保护”的概念,用于设计将抑制剂代谢为非抑制剂化合物的融合蛋白。