Departments of Radiology, Pathology, and Surgery, Section of Urology, University of Chicago, 5841 S Maryland Ave, MC2026, Chicago, IL 60637, USA.
Radiology. 2013 Jun;267(3):787-96. doi: 10.1148/radiol.13121454. Epub 2013 Feb 7.
To evaluate the potential utility of a number of parameters obtained at T2-weighted, diffusion-weighted, and dynamic contrast material-enhanced multiparametric magnetic resonance (MR) imaging for computer-aided diagnosis (CAD) of prostate cancer and assessment of cancer aggressiveness.
In this institutional review board-approved HIPAA-compliant study, multiparametric MR images were acquired with an endorectal coil in 48 patients with prostate cancer (median age, 62.5 years; age range, 44-73 years) who subsequently underwent prostatectomy. A radiologist and a pathologist identified 104 regions of interest (ROIs) (61 cancer ROIs, 43 normal ROIs) based on correlation of histologic and MR findings. The 10th percentile and average apparent diffusion coefficient (ADC) values, T2-weighted signal intensity histogram skewness, and Tofts K(trans) were analyzed, both individually and combined, via linear discriminant analysis, with receiver operating characteristic curve analysis with area under the curve (AUC) as figure of merit, to distinguish cancer foci from normal foci. Spearman rank-order correlation (ρ) was calculated between cancer foci Gleason score (GS) and image features.
AUC (maximum likelihood estimate ± standard error) values in the differentiation of prostate cancer from normal foci of 10th percentile ADC, average ADC, T2-weighted skewness, and K(trans) were 0.92 ± 0.03, 0.89 ± 0.03, 0.86 ± 0.04, and 0.69 ± 0.04, respectively. The combination of 10th percentile ADC, average ADC, and T2-weighted skewness yielded an AUC value for the same task of 0.95 ± 0.02. GS correlated moderately with 10th percentile ADC (ρ = -0.34, P = .008), average ADC (ρ = -0.30, P = .02), and K(trans) (ρ = 0.38, P = .004).
The combination of 10th percentile ADC, average ADC, and T2-weighted skewness with CAD is promising in the differentiation of prostate cancer from normal tissue. ADC image features and K(trans) moderately correlate with GS.
评估 T2 加权、扩散加权和动态对比增强多参数磁共振成像(MR)获得的多个参数在计算机辅助诊断(CAD)前列腺癌和评估癌症侵袭性方面的潜在应用价值。
本研究经机构审查委员会批准,并符合 HIPAA 规定,入组了 48 例前列腺癌患者(中位年龄 62.5 岁;年龄范围 44-73 岁),这些患者均接受了直肠内线圈多参数 MR 成像检查,随后接受了前列腺切除术。一位放射科医生和一位病理科医生根据组织学和 MR 检查结果的相关性,确定了 104 个感兴趣区(ROI)(61 个癌 ROI,43 个正常 ROI)。分析了第 10 百分位数和平均表观扩散系数(ADC)值、T2 加权信号强度直方图偏度和 Tofts K(trans),并通过线性判别分析对其进行了单独和组合分析,以Receiver Operating Characteristic 曲线分析(曲线下面积 AUC 作为衡量指标),以区分癌症病灶与正常病灶。计算了癌症病灶 Gleason 评分(GS)与图像特征之间的 Spearman 秩相关系数(ρ)。
第 10 百分位数 ADC、平均 ADC、T2 加权偏度和 K(trans)区分前列腺癌与正常病灶的 AUC 值(最大似然估计值±标准误差)分别为 0.92±0.03、0.89±0.03、0.86±0.04 和 0.69±0.04。第 10 百分位数 ADC、平均 ADC 和 T2 加权偏度的组合在相同任务中产生了 0.95±0.02 的 AUC 值。GS 与第 10 百分位数 ADC(ρ=-0.34,P=0.008)、平均 ADC(ρ=-0.30,P=0.02)和 K(trans)(ρ=0.38,P=0.004)呈中度相关。
第 10 百分位数 ADC、平均 ADC 和 T2 加权偏度与 CAD 相结合,有望区分前列腺癌与正常组织。ADC 图像特征和 K(trans)与 GS 中度相关。