Ye Yinquan, Gong Zijian, Song Yiling, Yv Lianyou, Liu Zhixuan, Ying Hongxing, Qiu Jia, Dai Jiankun, Peng Yun, Gong Lianggeng
Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China.
Quant Imaging Med Surg. 2024 Dec 5;14(12):9036-9048. doi: 10.21037/qims-24-1121. Epub 2024 Nov 29.
Amide proton transfer-weighted magnetic resonance imaging (APTw-MRI) and apparent diffusion coefficient (ADC) values can effectively differentiate clinically significant prostate cancer (csPCa). However, their added value in Prostate Imaging Reporting and Data System version 2.1 (PI-RADS v. 2.1) remains uncertain. This study aimed to investigate the added value of APTw-MRI and ADC to PI-RADS v. 2.1 in differentiating csPCa.
This study included 161 participants who underwent prostate biopsy or radical prostatectomy within 1 month following MRI. Six magnetic resonance (MR) parameters [minimum APT value (APTmin), maximum APT value (APTmax), mean APT value (APTmean), minimum ADC value (ADCmin), maximum ADC value (ADCmax), and mean ADC value (ADCmean)] and the PI-RADS score were acquired by two radiologists. Receiver operating characteristic (ROC) curve analysis was performed to evaluate and select parameters with the greatest performance from the APT and ADC values. Multivariate logistic regression analysis was conducted to construct models based on selected MR parameters and the PI-RADS score. The Delong test was applied to compare the area under the ROC curve (AUC) between models.
The lesions of csPCa exhibited higher APT values and lower ADC values than not clinically significant prostate cancer (ncsPCa). The greatest comprehensive performance in differentiating csPCa was achieved by APTmean (AUC: 0.723; cutoff value: >1.644) and ADCmean (AUC: 0.759; cutoff value: <0.656). The addition of APTmean significantly improved the performance of the model based on the PI-RADS score (AUC: APT PI-RADS 0.867 PI-RADS 0.813; P=0.002). The introduction of ADCmean further improved the performance of the model based on APTmean and PI-RADS (AUC: combined model 0.875 PI-RADS 0.867, P=0.69), and it retained high diagnostic efficacy (AUC: 0.835) in the validation cohort. Further verification through calibration curve and decision curve analysis demonstrated that the adjusted PI-RADS model exhibited remarkable precision and practicality.
APTw-MRI and ADC are valuable parameters for differentiating csPCa and can provide additional value for improving the efficiency and clinical benefit of PI-RADS v. 2.1.
酰胺质子转移加权磁共振成像(APTw-MRI)和表观扩散系数(ADC)值可有效鉴别具有临床意义的前列腺癌(csPCa)。然而,它们在前列腺影像报告和数据系统第2.1版(PI-RADS v. 2.1)中的附加价值仍不确定。本研究旨在探讨APTw-MRI和ADC对PI-RADS v. 2.1在鉴别csPCa方面的附加价值。
本研究纳入了161名在MRI检查后1个月内接受前列腺活检或根治性前列腺切除术的参与者。两名放射科医生获取了六个磁共振(MR)参数[最小APT值(APTmin)、最大APT值(APTmax)、平均APT值(APTmean)、最小ADC值(ADCmin)、最大ADC值(ADCmax)和平均ADC值(ADCmean)]以及PI-RADS评分。进行受试者操作特征(ROC)曲线分析,以评估和选择来自APT和ADC值中性能最佳的参数。基于选定的MR参数和PI-RADS评分进行多变量逻辑回归分析以构建模型。应用德龙检验比较各模型之间的ROC曲线下面积(AUC)。
与非临床意义的前列腺癌(ncsPCa)相比,csPCa的病变表现出更高的APT值和更低的ADC值。在鉴别csPCa方面,平均APT值(AUC:0.723;临界值:>1.644)和平均ADC值(AUC:0.759;临界值:<0.656)具有最佳的综合性能。添加平均APT值显著提高了基于PI-RADS评分的模型性能(AUC:APT-PI-RADS为0.867,PI-RADS为0.813;P = 0.002)。引入平均ADC值进一步提高了基于平均APT值和PI-RADS的模型性能(AUC:联合模型为0.875,PI-RADS为0.867,P = 0.69),并且在验证队列中保持了较高的诊断效能(AUC:0.835)。通过校准曲线和决策曲线分析进一步验证表明,调整后的PI-RADS模型具有显著的准确性和实用性。
APTw-MRI和ADC是鉴别csPCa的有价值参数,可为提高PI-RADS v. 2.1的效率和临床效益提供附加价值。