Suppr超能文献

通过扩散加权磁共振成像鉴别移行带前列腺癌病变

Differentiation of prostate cancer lesions in the Transition Zone by diffusion-weighted MRI.

作者信息

Bao Jie, Wang Ximing, Hu Chunhong, Hou Jianquan, Dong Fenglin, Guo Lingchuan

机构信息

Department of Radiology, The First Affiliated Hospital of Soochow University, 188#, Shizi Road, Suzhou, 215006, China.

Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.

出版信息

Eur J Radiol Open. 2017 Sep 29;4:123-128. doi: 10.1016/j.ejro.2017.08.003. eCollection 2017.

Abstract

OBJECTIVE

To differentiate prostate cancer lesions in transition zone by diffusion-weighted-MRI (DW-MRI).

METHODS

Data from a total of 63 patients who underwent preoperative DWI (b of 0-1000 s/mm) were prospectively collected and processed by a monoexponential (DWI) model and compared with a biexponential (IVIM) model for quantitation of apparent diffusion coefficients (ADCs), perfusion fraction f, diffusivity D and pseudo-diffusivity D*. Histogram analyses were performed by outlining entire-tumor regions of interest (ROIs). These parameters (separately and combined in a logistic regression model) were used to differentiate lesions depending on histopathological analysis of Magnetic Resonance/transrectal Ultrasound (MR/TRUS) fusion-guided biopsy. The diagnostic ability of differentiate the PCa from BHP in TZ was analyzed by ROC regression. Histogram analysis of quantitative parameters and Gleason score were assessed with Spearman correlation.

RESULTS

Thirty (30 foci) cases of PCa in PZ and 33 (36 foci) cases of BPH were confirmed by pathology. Mean ADC, median ADC, 10th percentile ADC, 90th percentile ADC, kurtosis and skewness of ADC and mean D values, median D and 90th percentile D differed significantly between PCa and BHP in TZ. The highest classification accuracy was achieved by the mean ADC (0.841) and mean D (0.809). A logistic regression model based on mean ADC and mean D led to an AUC of 0.873, however, the difference is not significant. There were 7 Gleason 6 areas, 9 Gleason 7 areas, 8 Gleason 8 areas, 5 Gleason 9 areas and 2 Gleason 10 areas detected from the 31 prostate cancer areas, the mean Gleason value was(7.5 ± 1.2). The mean ADC and mean D had correlation with Gleason score(r = -0.522 and r = -0.407 respectively, P < 0.05).

CONCLUSION

The diagnosis efficiency of IVIM parameters was not superior to ADC in the diagnosis of PCa in TZ. Moreover, the combination of mean ADC and mean D did not perform better than the parameters alone significantly; It is feasible to stratify the pathological grade of prostate cancer by mean ADC.

摘要

目的

通过扩散加权磁共振成像(DW-MRI)鉴别移行区前列腺癌病变。

方法

前瞻性收集63例术前行扩散加权成像(b值为0 - 1000 s/mm²)患者的数据,采用单指数(DWI)模型进行处理,并与双指数(IVIM)模型比较,以定量表观扩散系数(ADC)、灌注分数f、扩散系数D和伪扩散系数D*。通过勾勒整个肿瘤感兴趣区(ROI)进行直方图分析。这些参数(单独或组合纳入逻辑回归模型)用于根据磁共振/经直肠超声(MR/TRUS)融合引导活检的组织病理学分析来鉴别病变。通过ROC回归分析鉴别移行区前列腺癌与良性前列腺增生(BPH)的诊断能力。采用Spearman相关性评估定量参数的直方图分析与Gleason评分。

结果

病理确诊30例前列腺外周带(PZ)前列腺癌(30个病灶)和33例BPH(36个病灶)。TZ区前列腺癌与BPH之间的平均ADC、中位数ADC、第10百分位数ADC、第90百分位数ADC、ADC的峰度和偏度以及平均D值、中位数D和第90百分位数D存在显著差异。平均ADC(0.841)和平均D(0.809)的分类准确率最高。基于平均ADC和平均D的逻辑回归模型的曲线下面积(AUC)为0.873,但差异不显著。在31个前列腺癌区域中检测到7个Gleason 6级区域、9个Gleason 7级区域、8个Gleason 8级区域、5个Gleason 9级区域和2个Gleason 10级区域,平均Gleason评分为(7.5 ± 1.2)。平均ADC和平均D与Gleason评分相关(分别为r = -0.522和r = -0.407,P < 0.05)。

结论

在移行区前列腺癌的诊断中,IVIM参数的诊断效率不优于ADC。此外,平均ADC和平均D的组合并不比单独参数表现更好;通过平均ADC对前列腺癌病理分级进行分层是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80ac/5633348/42b65dc3d597/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验