Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, E-30100, Murcia, Spain.
J Plant Physiol. 2013 May 1;170(7):676-87. doi: 10.1016/j.jplph.2012.12.011. Epub 2013 Feb 7.
Nitrogen availability is an important limiting factor for plant growth. Although NH4(+) assimilation is energetically more favorable than NO3(-), it is usually toxic for plants. In order to study if an improved ammonium assimilatory metabolism could increase the plant tolerance to ammonium nutrition, tomato (Solanum lycopersicum L. cv P-73) plants were transformed with an NH4(+)-dependent asparagine synthetase (AS-A) gene from Escherichia coli (asnA) under the control of a PCpea promoter (pea isolated constitutive promotor). Homozygous (Hom), azygous (Az) asnA and wild type (WT) plants were grown hydroponically for 6 weeks with normal Hoagland nutrition (NO3(-)/NH4(+)=6/0.5) and high ammonium nutrition (NO3(-)/NH4(+)=3.5/3). Under Hoagland's conditions, Hom plants produced 40-50% less biomass than WT and Az plants. However, under NO3(-)/NH4(+)=3.5/3 the biomass of Hom was not affected while it was reduced by 40-70% in WT and Az plants compared to Hoagland, respectively. The Hom plants accumulated 1.5-4 times more asparagine, glycine, serine and soluble proteins and registered higher glutamine synthetase (GS) and glutamate synthase (GOGAT) activities in the light-adapted leaves than the other genotypes, but had similar NH4(+) and NO3(-) levels in all conditions. In the dark-adapted leaves, a protein catabolism occurred in the Hom plants with a concomitant 25-40% increase in organic acid concentration, while asparagine accumulation registered the highest values. The aforementioned processes might be responsible for a positive energetic balance as regards the futile cycle of the transgenic protein synthesis and catabolism. This explains growth penalty under standard nutrition and growth stability under NO3(-)/NH4(+)=3.5/3, respectively.
氮素供应是植物生长的一个重要限制因素。尽管 NH4(+)同化在能量上比 NO3(-)更有利,但它通常对植物有毒。为了研究提高铵同化代谢是否能提高植物对铵营养的耐受性,番茄(Solanum lycopersicum L. cv P-73)植株在 PCpea 启动子(豌豆分离组成型启动子)的控制下,转化为来自大肠杆菌的 NH4(+)-依赖型天冬酰胺合成酶(AS-A)基因(asnA)。纯合子(Hom)、杂合子(Az) asnA 和野生型(WT)植株在正常 Hoagland 营养液(NO3(-)/NH4(+)=6/0.5)和高铵营养液(NO3(-)/NH4(+)=3.5/3)中进行水培 6 周。在 Hoagland 条件下,Hom 植株的生物量比 WT 和 Az 植株少 40-50%。然而,在 NO3(-)/NH4(+)=3.5/3 条件下,Hom 植株的生物量没有受到影响,而 WT 和 Az 植株的生物量分别比 Hoagland 条件下减少了 40-70%。与其他基因型相比,Hom 植株在光照适应的叶片中积累了 1.5-4 倍的天冬酰胺、甘氨酸、丝氨酸和可溶性蛋白质,并且谷氨酸合酶(GS)和谷氨酸合酶(GOGAT)活性更高,但在所有条件下,NH4(+)和 NO3(-)水平相似。在黑暗适应的叶片中,Hom 植株发生了蛋白质分解代谢,同时有机酸浓度增加了 25-40%,而天冬酰胺的积累达到了最高值。上述过程可能是导致转基蛋白合成和分解代谢无效循环的积极能量平衡的原因。这解释了在标准营养条件下生长受限和在 NO3(-)/NH4(+)=3.5/3 条件下生长稳定的原因。