Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.
Mol Cell. 2013 Mar 7;49(5):934-46. doi: 10.1016/j.molcel.2013.01.007. Epub 2013 Feb 8.
To provide a lifelong supply of blood cells, hematopoietic stem cells (HSCs) need to carefully balance both self-renewing cell divisions and quiescence. Although several regulators that control this mechanism have been identified, we demonstrate that the transcription factor PU.1 acts upstream of these regulators. So far, attempts to uncover PU.1's role in HSC biology have failed because of the technical limitations of complete loss-of-function models. With the use of hypomorphic mice with decreased PU.1 levels specifically in phenotypic HSCs, we found reduced HSC long-term repopulation potential that could be rescued completely by restoring PU.1 levels. PU.1 prevented excessive HSC division and exhaustion by controlling the transcription of multiple cell-cycle regulators. Levels of PU.1 were sustained through autoregulatory PU.1 binding to an upstream enhancer that formed an active looped chromosome architecture in HSCs. These results establish that PU.1 mediates chromosome looping and functions as a master regulator of HSC proliferation.
为了提供终生的血细胞供应,造血干细胞(HSCs)需要仔细平衡自我更新的细胞分裂和静止。尽管已经确定了几种控制这种机制的调节剂,但我们证明转录因子 PU.1 在这些调节剂的上游起作用。到目前为止,由于完全缺失功能模型的技术限制,试图揭示 PU.1 在 HSC 生物学中的作用的尝试都失败了。使用表型 HSCs 中 PU.1 水平降低的条件性敲低小鼠,我们发现 HSC 的长期重编程潜力降低,通过恢复 PU.1 水平可以完全挽救。PU.1 通过控制多个细胞周期调节剂的转录来防止 HSC 过度分裂和耗竭。PU.1 的水平通过自调节的 PU.1 与上游增强子结合来维持,该增强子在 HSCs 中形成一个活跃的环染色体结构。这些结果表明,PU.1 介导染色体环化,并作为 HSC 增殖的主调节因子发挥作用。