Technische Universität München, Bio-Inspired Information Processing, Boltzmannstr. 11, 85748 Garching, Germany.
Hear Res. 2013 May;299:10-8. doi: 10.1016/j.heares.2013.01.015. Epub 2013 Feb 8.
In cochlear implants, severe limitations arise from electrical crosstalk between channels. Therefore, the current trend in cochlear implants is to increase stimulation rates to encode signals with higher temporal precision. However, the fundamental question: "What is the limit of temporal precision due to inherent neuronal dynamics of the stimulated neurons?" has not yet been resolved. In this study we have developed a double-pulse method and, for the first time, reversed stimulus polarity systematically between consecutive pulses to elucidate subthreshold-induced temporal interaction effects. This method allowed us to determine the time-course of subthreshold temporal interaction in human subjects which identifies the limits of encoded temporal precision. Our results show significant temporal interaction up to 600 μs inter-pulse interval. In all the cases tested we saw a facilitation effect on threshold. Interaction effects at a 20% below threshold pre-conditioning stimulation showed up to 38% ± 6% threshold reduction. These results imply that there is significant temporal interaction between two subsequent pulses. This interaction diminishes the precision of amplitude coding. We predict interaction effects on temporal precision and channel interaction. For (interleaved) stimulation with short inter-pulse intervals it is interesting to consider our interaction results; and it may become important to consider them for future coding strategies where high temporal precision is required. In an increasing group of binaural implanted patients this will be the case when interaural time differences are encoded with μs precision.
在耳蜗植入物中,通道之间的电串扰会产生严重的限制。因此,目前耳蜗植入物的趋势是提高刺激率,以更高的时间精度对信号进行编码。然而,一个基本问题是:“由于受刺激神经元的固有神经元动力学,时间精度的极限是多少?”这个问题尚未得到解决。在这项研究中,我们开发了一种双脉冲方法,并首次在连续脉冲之间系统地反转刺激极性,以阐明亚阈下诱导的时间相互作用效应。该方法使我们能够确定人类受试者中亚阈下时间相互作用的时间进程,从而确定编码时间精度的极限。我们的结果显示,在 600 μs 的脉冲间隔内存在显著的时间相互作用。在所有测试的情况下,我们都看到阈值上存在易化效应。在 20%低于阈值的预刺激条件下,交互效应高达 38%±6%的阈值降低。这些结果表明,两个后续脉冲之间存在显著的时间相互作用。这种相互作用降低了幅度编码的精度。我们预测时间精度和通道相互作用的交互效应。对于具有短脉冲间隔的(交错)刺激,我们的交互结果很有趣;对于需要高精度时间的未来编码策略,可能需要考虑这些结果。在越来越多的双耳植入患者中,当需要以微秒精度对耳间时间差异进行编码时,就会出现这种情况。