Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
Microbiology (Reading). 2013 Feb;159(Pt 2):402-410. doi: 10.1099/mic.0.064139-0.
The signalling molecule indole occurs in significant amounts in the mammalian intestinal tract and regulates diverse microbial processes, including bacterial motility, biofilm formation, antibiotic resistance and host cell invasion. In Escherichia coli, the enzyme tryptophanase (TnaA) produces indole from tryptophan, but it is not clear what determines how much indole E. coli can produce and excrete, making it difficult to interpret experiments that investigate the biological effects of indole at high concentrations. Here, we report that the final yield of indole depends directly, and perhaps solely, on the amount of exogenous tryptophan. When supplied with a range of tryptophan concentrations, E. coli converted this amino acid into an equal amount of indole, up to almost 5 mM, an amount well within the range of the highest concentrations so far examined for their physiological effects. Indole production relied heavily on the tryptophan-specific transporter TnaB, even though the alternative transporters AroP and Mtr could import sufficient tryptophan to induce tnaA expression. This TnaB requirement proceeded via tryptophan transport and was not caused by activation of TnaA itself. Bacterial growth was unaffected by the presence of TnaA in the absence of exogenous tryptophan, suggesting that the enzyme does not hydrolyse significant quantities of the internal anabolic amino acid pool. The results imply that E. coli synthesizes TnaA and TnaB mainly, or solely, for the purpose of converting exogenous tryptophan into indole, under conditions and for signalling purposes that remain to be fully elucidated.
色氨酸是一种信号分子,在哺乳动物的肠道中含量丰富,调节着多种微生物过程,包括细菌的运动性、生物膜形成、抗生素耐药性和宿主细胞入侵。在大肠杆菌中,色氨酸酶(TnaA)将色氨酸转化为吲哚,但目前尚不清楚是什么决定了大肠杆菌能够产生和排泄多少吲哚,这使得解释在高浓度下研究吲哚的生物学效应的实验变得困难。在这里,我们报告说,吲哚的最终产量直接取决于,并且可能仅仅取决于外源性色氨酸的量。当提供一系列色氨酸浓度时,大肠杆菌将这种氨基酸转化为等量的吲哚,高达近 5 mM,这一数量远在迄今为止研究其生理效应的最高浓度范围内。吲哚的产生严重依赖于色氨酸特异性转运蛋白 TnaB,尽管替代转运蛋白 AroP 和 Mtr 可以导入足够的色氨酸来诱导 tnaA 表达。这种对 TnaB 的需求是通过色氨酸转运进行的,而不是由 TnaA 本身的激活引起的。在没有外源性色氨酸的情况下,细菌的生长不受 TnaA 的存在的影响,这表明该酶不会水解大量的内部合成氨基酸池。结果表明,大肠杆菌合成 TnaA 和 TnaB 主要是,或者仅仅是为了将外源性色氨酸转化为吲哚,其条件和信号目的仍有待充分阐明。