Yoshida Yasuo, Sasaki Takako, Ito Shuntaro, Tamura Haruki, Kunimatsu Kazushi, Kato Hirohisa
Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan.
Department of Periodontology, Iwate Medical University School of Dentistry, Morioka, Japan.
Microbiology (Reading). 2009 Mar;155(Pt 3):968-978. doi: 10.1099/mic.0.024174-0.
Indole produced via the beta-elimination reaction of l-tryptophan by pyridoxal 5'-phosphate-dependent tryptophanase (EC 4.1.99.1) has recently been shown to be an extracellular and intercellular signalling molecule in bacteria, and controls bacterial biofilm formation and virulence factors. In the present study, we determined the molecular basis of indole production in the periodontopathogenic bacterium Porphyromonas gingivalis. A database search showed that the amino acid sequence deduced from pg1401 of P. gingivalis W83 is 45 % identical with that from tnaA of Escherichia coli K-12, which encodes tryptophanase. Replacement of the pg1401 gene in the chromosomal DNA with the chloramphenicol-resistance gene abolished indole production. The production of indole was restored by the introduction of pg1401, demonstrating that the gene is functionally equivalent to tnaA. However, RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends analyses showed that, unlike E. coli tnaA, pg1401 is expressed alone in P. gingivalis and that the nucleotide sequence of the transcription start site is different, suggesting that the expression of P. gingivalis tnaA is controlled by a unique mechanism. Purified recombinant P. gingivalis tryptophanase exhibited the Michaelis-Menten kinetics values K(m)=0.20+/-0.01 mM and k(cat)=1.37+/-0.06 s(-1) in potassium phosphate buffer, but in sodium phosphate buffer, the enzyme showed lower activity. However, the cation in the buffer, K(+) or Na(+), did not appear to affect the quaternary structure of the enzyme or the binding of pyridoxal 5'-phosphate to the enzyme. The enzyme also degraded S-ethyl-l-cysteine and S-methyl-l-cysteine, but not l-alanine, l-serine or l-cysteine.
通过5'-磷酸吡哆醛依赖性色氨酸酶(EC 4.1.99.1)对l-色氨酸进行β-消除反应产生的吲哚最近被证明是细菌中的一种细胞外和细胞间信号分子,并控制细菌生物膜形成和毒力因子。在本研究中,我们确定了牙周致病细菌牙龈卟啉单胞菌中吲哚产生的分子基础。数据库搜索显示,牙龈卟啉单胞菌W83的pg1401推导的氨基酸序列与编码色氨酸酶的大肠杆菌K-12的tnaA的氨基酸序列有45%的同一性。用氯霉素抗性基因替换染色体DNA中的pg1401基因消除了吲哚的产生。通过引入pg1401恢复了吲哚的产生,证明该基因在功能上等同于tnaA。然而,RT-PCR和RNA连接酶介导的cDNA末端快速扩增分析表明,与大肠杆菌tnaA不同,pg1401在牙龈卟啉单胞菌中单独表达,并且转录起始位点的核苷酸序列不同,这表明牙龈卟啉单胞菌tnaA的表达受独特机制控制。纯化的重组牙龈卟啉单胞菌色氨酸酶在磷酸钾缓冲液中的米氏动力学值为K(m)=0.20±0.01 mM和k(cat)=1.37±0.06 s(-1),但在磷酸钠缓冲液中,该酶活性较低。然而,缓冲液中的阳离子K(+)或Na(+)似乎不影响酶的四级结构或5'-磷酸吡哆醛与酶的结合。该酶还降解S-乙基-l-半胱氨酸和S-甲基-l-半胱氨酸,但不降解l-丙氨酸、l-丝氨酸或l-半胱氨酸。