Suppr超能文献

韦氏成人智力量表第四版数字广度变量:它们在预测雷伊听觉词语学习测验和明尼苏达失语症甄别测验失败方面有价值吗?

WAIS-IV Digit Span variables: are they valuable for use in predicting TOMM and MSVT failure?

作者信息

Whitney Kriscinda A, Shepard Polly H, Davis Jeremy J

机构信息

Psychiatry Department , Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.

出版信息

Appl Neuropsychol Adult. 2013;20(2):83-94. doi: 10.1080/09084282.2012.670167. Epub 2012 Nov 8.

Abstract

The Digit Span (DS) task in the Wechsler Adult Intelligence Scale-Fourth Edition differs substantially from earlier versions of the measure, with one of the major changes being the addition of a sequencing component. In the present investigation, the usefulness of the new sequencing task and other DS variables (i.e., DS Age-Scaled Score, DS Forward Total, DS Backward Total, and Reliable DS) was investigated with regard to the ability of these variables to predict negative response bias. Negative response bias was first defined and examined using below-cutoff performance on the Test of Memory Malingering (TOMM) (N = 99). Then, for comparison purposes, negative response bias was examined using below-cutoff performance on the Medical Symptom Validity Test (MSVT; N = 95). Study participants included primarily middle-aged outpatients at a Veterans Affairs medical center. Findings from this retrospective analysis showed that, regardless of whether the TOMM or the MSVT was used as the negative response bias criterion, of all the DS variables examined, DS Sequencing Total showed the best classification accuracy. Yet, due to its relatively low positive and negative predictive power, DS Sequencing Total is not recommended for use in isolation to identify negative response bias.

摘要

韦氏成人智力量表第四版中的数字广度(DS)任务与该测量方法的早期版本有很大不同,其中一个主要变化是增加了一个排序部分。在本研究中,针对新排序任务和其他DS变量(即DS年龄量表分数、DS顺背总分、DS倒背总分和可靠DS)预测负性反应偏差的能力进行了研究。首先使用记忆伪装测验(TOMM)低于临界值的表现来定义和检验负性反应偏差(N = 99)。然后,为了进行比较,使用医学症状效度测验(MSVT;N = 95)低于临界值的表现来检验负性反应偏差。研究参与者主要是一家退伍军人事务医疗中心的中年门诊患者。这项回顾性分析的结果表明,无论将TOMM还是MSVT用作负性反应偏差标准,在所检查的所有DS变量中,DS排序总分显示出最佳的分类准确性。然而,由于其相对较低的阳性和阴性预测能力,不建议单独使用DS排序总分来识别负性反应偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验