Suppr超能文献

基于光学表面信息的SPECT成像呼吸相位分类与运动融合重建

Optical surface information-based respiratory phase-sorting and motion-incorporated reconstruction for SPECT imaging.

作者信息

Li Chenguang, Polson Lucas A, Wu Xuzhou, Zhang Yibao, Uribe Carlos, Rahmim Arman

机构信息

Department of Physics & Astronomy, The University of British Columbia, Vancouver, Canada.

Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.

出版信息

Med Phys. 2025 Jun;52(6):4330-4340. doi: 10.1002/mp.17769. Epub 2025 Mar 24.

Abstract

BACKGROUND

Respiratory motion during the single photon emission computed tomography (SPECT) acquisition can cause blurring artifacts in the reconstructed images, leading to inaccurate estimates for activity and absorbed doses.

PURPOSE

To address the impact of respiratory motion, we utilized a new optical surface imaging (OSI) system to extract the respiratory signals for phase sorting and verified its effectiveness through simulation and patient data. Additionally, we implemented GPU-accelerated motion-incorporated reconstruction algorithms for the SPECT projections, integrating motion information to produce motion-free images from all acquired data.

METHODS

We used the 4D XCAT Phantom to generate attenuation maps and activity images across different respiratory phases, with activity distributions based on patient images. SPECT projections were simulated using the SIMIND Monte Carlo program with Poisson noise. The OSI system was modeled by introducing Gaussian noise into the point clouds on the body surface within the attenuation map. The body surface images were registered across phases using a Gaussian mixture model combined with principal component analysis. The extracted respiratory signals were compared to the center-of-light (COL) approach, with or without filtering and kidney masking. The OSI method was further validated by comparing respiratory signals derived from a real patient using OSI to simultaneous cone-beam CT (CBCT) projections. Two motion-incorporated techniques, namely, 4D reconstruction (4D-Recon) and post-reconstruction registration and summation (post-Recon), were compared with non-motion-corrected images (non-MC) and single-phase gating (Gating). The quantitative evaluation of image quality utilized recovery coefficients (RC), contrast recovery coefficients (CRC), and uncertainty estimation.

RESULTS

In simulation, the correlation between the ground-truth and OSI-based signals remained high and stable (0.99 ± 0.004, p-value 0.001 vs. COL-filter with kidney masking). While the kidney mask improved performance (0.87 ± 0.07 without filtering and 0.90 ± 0.06 with filtering, p-value 0.001), it was less effective and more uncertain than the OSI method. Validation with patient data showed high consistency in breathing frequencies and phase alignment between CBCT-based and OSI-based signals. For reconstruction, both 4D-Recon and post-Recon significantly enhanced RC and CRC compared to non-MC, with less uncertainty than Gating. In addition, 4D-Recon outperformed post-Recon in certain aspects.

CONCLUSIONS

Our novel respiratory signal extraction approach based on OSI demonstrated superior accuracy and reliability compared to a data-driven method. Applying motion-incorporated SPECT reconstruction using these accurate breathing signals has the potential to enhance image quality and improve absorbed dose quantification in radiopharmaceutical therapy. The relevant reconstruction algorithms are also made available for public use in the open-source library PyTomography.

摘要

背景

单光子发射计算机断层扫描(SPECT)采集过程中的呼吸运动会在重建图像中产生模糊伪影,导致对活性和吸收剂量的估计不准确。

目的

为解决呼吸运动的影响,我们利用一种新的光学表面成像(OSI)系统提取呼吸信号进行相位分类,并通过模拟和患者数据验证其有效性。此外,我们为SPECT投影实现了GPU加速的运动合并重建算法,整合运动信息以从所有采集的数据中生成无运动图像。

方法

我们使用4D XCAT体模生成不同呼吸相位的衰减图和活性图像,活性分布基于患者图像。使用带有泊松噪声的SIMIND蒙特卡罗程序模拟SPECT投影。通过将高斯噪声引入衰减图内体表的点云来对OSI系统进行建模。使用高斯混合模型结合主成分分析在各相位之间配准体表图像。将提取的呼吸信号与中心光(COL)方法进行比较,有无滤波和肾脏掩蔽。通过将使用OSI从真实患者获得的呼吸信号与同步锥束CT(CBCT)投影进行比较,进一步验证OSI方法。将两种运动合并技术,即4D重建(4D-Recon)和重建后配准与求和(post-Recon),与未进行运动校正的图像(non-MC)和单相门控(Gating)进行比较。图像质量的定量评估使用恢复系数(RC)、对比度恢复系数(CRC)和不确定性估计。

结果

在模拟中,真实值与基于OSI的信号之间的相关性保持高且稳定(0.99±0.004,与带肾脏掩蔽的COL滤波相比,p值<0.001)。虽然肾脏掩蔽改善了性能(未滤波时为0.87±0.07,滤波时为0.90±0.06,p值<0.001),但它比OSI方法效果更差且不确定性更大。患者数据验证显示基于CBCT的信号和基于OSI的信号在呼吸频率和相位对齐方面具有高度一致性。对于重建,与non-MC相比,4D-Recon和post-Recon均显著提高了RC和CRC,且不确定性比Gating小。此外,4D-Recon在某些方面优于post-Recon。

结论

我们基于OSI的新型呼吸信号提取方法与数据驱动方法相比,具有更高的准确性和可靠性。使用这些准确的呼吸信号进行运动合并的SPECT重建有可能提高图像质量并改善放射性药物治疗中的吸收剂量定量。相关的重建算法也在开源库PyTomography中供公众使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验