Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warsaw, Poland.
Plant Physiol. 2013 Apr;161(4):1795-805. doi: 10.1104/pp.112.208116. Epub 2013 Feb 11.
There is growing evidence that for a comprehensive insight into the function of plant genes, it is crucial to assess their functionalities under a wide range of conditions. In this study, we examined the role of lesion simulating disease1 (LSD1), enhanced disease susceptibility1 (EDS1), and phytoalexin deficient4 (PAD4) in the regulation of photosynthesis, water use efficiency, reactive oxygen species/hormonal homeostasis, and seed yield in Arabidopsis (Arabidopsis thaliana) grown in the laboratory and in the field. We demonstrate that the LSD1 null mutant (lsd1), which is known to exhibit a runaway cell death in nonpermissive conditions, proves to be more tolerant to combined drought and high-light stress than the wild type. Moreover, depending on growing conditions, it shows variations in water use efficiency, salicylic acid and hydrogen peroxide concentrations, photosystem II maximum efficiency, and transcription profiles. However, despite these changes, lsd1 demonstrates similar seed yield under all tested conditions. All of these traits depend on EDS1 and PAD4. The differences in the pathways prevailing in the lsd1 in various growing environments are manifested by the significantly smaller number of transcripts deregulated in the field compared with the laboratory, with only 43 commonly regulated genes. Our data indicate that LSD1, EDS1, and PAD4 participate in the regulation of various molecular and physiological processes that influence Arabidopsis fitness. On the basis of these results, we emphasize that the function of such important regulators as LSD1, EDS1, and PAD4 should be studied not only under stable laboratory conditions, but also in the environment abounding in multiple stresses.
越来越多的证据表明,为了全面了解植物基因的功能,评估它们在广泛条件下的功能至关重要。在这项研究中,我们研究了病变模拟病 1(LSD1)、增强疾病易感性 1(EDS1)和植物抗毒素缺乏 4(PAD4)在调节光合作用、水分利用效率、活性氧/激素平衡和拟南芥种子产量中的作用。我们证明,LSD1 缺失突变体(lsd1)在非允许条件下表现出失控的细胞死亡,比野生型更能耐受干旱和高光胁迫的组合。此外,根据生长条件的不同,它在水分利用效率、水杨酸和过氧化氢浓度、光系统 II 最大效率和转录谱方面表现出变化。然而,尽管有这些变化,lsd1 在所有测试条件下表现出相似的种子产量。所有这些特征都依赖于 EDS1 和 PAD4。在不同的生长环境中,lsd1 中占主导地位的途径的差异表现在与实验室相比,田间调节的转录物数量明显减少,只有 43 个共同调节的基因。我们的数据表明,LSD1、EDS1 和 PAD4 参与调节各种影响拟南芥适应性的分子和生理过程。基于这些结果,我们强调,像 LSD1、EDS1 和 PAD4 这样的重要调节剂的功能不仅应该在稳定的实验室条件下进行研究,还应该在充满多种胁迫的环境中进行研究。