Laboratorio di Chimica dello Stato Solido, DB, Università di Verona and INSTM, UdR Verona, Ca' Vignal, Strada Le Grazie 15, I-37134 Verona, Italy.
Small. 2013 Jun 24;9(12):2162-70. doi: 10.1002/smll.201201740. Epub 2013 Feb 11.
Laser-induced thermal effects in optically trapped microspheres and single cells are investigated by quantum dot luminescence thermometry. Thermal spectroscopy has revealed a non-localized temperature distribution around the trap that extends over tens of micrometers, in agreement with previous theoretical models besides identifying water absorption as the most important heating source. The experimental results of thermal loading at a variety of wavelengths reveal that an optimum trapping wavelength exists for biological applications close to 820 nm. This is corroborated by a simultaneous analysis of the spectral dependence of cellular heating and damage in human lymphocytes during optical trapping. This quantum dot luminescence thermometry demonstrates that optical trapping with 820 nm laser radiation produces minimum intracellular heating, well below the cytotoxic level (43 °C), thus, avoiding cell damage.
通过量子点发光测温法研究了光阱微球和单细胞中的激光热效应。热光谱学揭示了一种非局域的温度分布,其范围超过数十微米,与以前的理论模型一致,同时还确定了水吸收是最重要的加热源。在各种波长下进行热加载的实验结果表明,对于接近 820nm 的生物应用,存在最佳的捕获波长。这一点通过同时分析人淋巴细胞在光学捕获过程中细胞加热和损伤的光谱依赖性得到了证实。这种量子点发光测温法表明,使用 820nm 激光辐射进行光学捕获会产生最小的细胞内加热,远低于细胞毒性水平(43°C),从而避免了细胞损伤。