Suppr超能文献

简单病毒三维几何结构的结构限制:一种新型预测工具的案例研究

Structural constraints on the three-dimensional geometry of simple viruses: case studies of a new predictive tool.

作者信息

Keef Thomas, Wardman Jessica P, Ranson Neil A, Stockley Peter G, Twarock Reidun

机构信息

York Centre for Complex Systems Analysis, Departments of Mathematics and Biology, University of York, York, England.

出版信息

Acta Crystallogr A. 2013 Mar;69(Pt 2):140-50. doi: 10.1107/S0108767312047150. Epub 2013 Jan 8.

Abstract

Understanding the fundamental principles of virus architecture is one of the most important challenges in biology and medicine. Crick and Watson were the first to propose that viruses exhibit symmetry in the organization of their protein containers for reasons of genetic economy. Based on this, Caspar and Klug introduced quasi-equivalence theory to predict the relative locations of the coat proteins within these containers and classified virus structure in terms of T-numbers. Here it is shown that quasi-equivalence is part of a wider set of structural constraints on virus structure. These constraints can be formulated using an extension of the underlying symmetry group and this is demonstrated with a number of case studies. This new concept in virus biology provides for the first time predictive information on the structural constraints on coat protein and genome topography, and reveals a previously unrecognized structural interdependence of the shapes and sizes of different viral components. It opens up the possibility of distinguishing the structures of different viruses with the same T-number, suggesting a refined viral structure classification scheme. It can moreover be used as a basis for models of virus function, e.g. to characterize the start and end configurations of a structural transition important for infection.

摘要

理解病毒结构的基本原理是生物学和医学领域最重要的挑战之一。克里克和沃森率先提出,出于基因经济性的考虑,病毒在其蛋白质外壳的组织中呈现出对称性。基于此,卡斯帕和克鲁格引入了准等效理论,以预测这些外壳内衣壳蛋白的相对位置,并根据T值对病毒结构进行分类。本文表明,准等效是对病毒结构更广泛的一组结构约束的一部分。这些约束可以通过扩展基础对称群来表述,并且通过一些案例研究进行了证明。病毒生物学中的这一新概念首次提供了关于衣壳蛋白结构约束和基因组拓扑结构的预测信息,并揭示了不同病毒成分的形状和大小之间以前未被认识到的结构相互依存关系。它为区分具有相同T值的不同病毒的结构提供了可能性,提出了一种更精细的病毒结构分类方案。此外,它还可以用作病毒功能模型的基础,例如用于表征对感染至关重要的结构转变的起始和结束构型。

相似文献

1
Structural constraints on the three-dimensional geometry of simple viruses: case studies of a new predictive tool.
Acta Crystallogr A. 2013 Mar;69(Pt 2):140-50. doi: 10.1107/S0108767312047150. Epub 2013 Jan 8.
2
Affine extensions of the icosahedral group with applications to the three-dimensional organisation of simple viruses.
J Math Biol. 2009 Sep;59(3):287-313. doi: 10.1007/s00285-008-0228-5. Epub 2008 Nov 1.
3
Measurements of the self-assembly kinetics of individual viral capsids around their RNA genome.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22485-22490. doi: 10.1073/pnas.1909223116. Epub 2019 Sep 30.
4
The structure of bacteriophage phiCb5 reveals a role of the RNA genome and metal ions in particle stability and assembly.
J Mol Biol. 2009 Aug 21;391(3):635-47. doi: 10.1016/j.jmb.2009.06.047. Epub 2009 Jun 23.
5
A tiling approach to virus capsid assembly explaining a structural puzzle in virology.
J Theor Biol. 2004 Feb 21;226(4):477-82. doi: 10.1016/j.jtbi.2003.10.006.
6
Asymmetric genome organization in an RNA virus revealed via graph-theoretical analysis of tomographic data.
PLoS Comput Biol. 2015 Mar 20;11(3):e1004146. doi: 10.1371/journal.pcbi.1004146. eCollection 2015 Mar.
7
In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus.
Nature. 2017 Jan 5;541(7635):112-116. doi: 10.1038/nature20589. Epub 2016 Dec 19.
9
On the origin of order in the genome organization of ssRNA viruses.
Biophys J. 2011 Aug 17;101(4):774-80. doi: 10.1016/j.bpj.2011.07.005.
10
Form, symmetry and packing of biomacromolecules. IV. Filled capsids of cowpea, tobacco, MS2 and pariacoto RNA viruses.
Acta Crystallogr A. 2011 Nov;67(Pt 6):517-20. doi: 10.1107/S0108767311035513. Epub 2011 Oct 13.

引用本文的文献

1
Solvation, geometry, and assembly of the tobacco mosaic virus.
PNAS Nexus. 2025 Feb 25;4(3):pgaf065. doi: 10.1093/pnasnexus/pgaf065. eCollection 2025 Mar.
2
Dynamic Assembly of Pentamer-Based Protein Nanotubes.
ACS Nano. 2025 Mar 11;19(9):8786-8798. doi: 10.1021/acsnano.4c16192. Epub 2025 Feb 24.
3
Explicit description of viral capsid subunit shapes by unfolding dihedrons.
Commun Biol. 2024 Nov 14;7(1):1509. doi: 10.1038/s42003-024-07218-x.
4
A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world.
Math Models Methods Appl Sci. 2020 Jul;30(8):1591-1651. doi: 10.1142/s0218202520500323. Epub 2020 Aug 19.
5
Viral Phrenology.
Viruses. 2021 Oct 30;13(11):2191. doi: 10.3390/v13112191.
6
Origami and materials science.
Philos Trans A Math Phys Eng Sci. 2021 Jul 12;379(2201):20200113. doi: 10.1098/rsta.2020.0113. Epub 2021 May 24.
7
Unveiling the Hidden Rules of Spherical Viruses Using Point Arrays.
Viruses. 2020 Apr 20;12(4):467. doi: 10.3390/v12040467.
8
Structural puzzles in virology solved with an overarching icosahedral design principle.
Nat Commun. 2019 Sep 27;10(1):4414. doi: 10.1038/s41467-019-12367-3.
9
Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles.
PLoS One. 2016 Apr 5;11(4):e0152319. doi: 10.1371/journal.pone.0152319. eCollection 2016.

本文引用的文献

1
Form, symmetry and packing of biomacromolecules. V. Shells with boundaries at anti-nodes of resonant vibrations in icosahedral RNA viruses.
Acta Crystallogr A. 2011 Nov;67(Pt 6):521-32. doi: 10.1107/S010876731103577X. Epub 2011 Oct 13.
2
Form, symmetry and packing of biomacromolecules. IV. Filled capsids of cowpea, tobacco, MS2 and pariacoto RNA viruses.
Acta Crystallogr A. 2011 Nov;67(Pt 6):517-20. doi: 10.1107/S0108767311035513. Epub 2011 Oct 13.
3
A crystallographic approach to structural transitions in icosahedral viruses.
J Math Biol. 2012 Apr;64(5):745-73. doi: 10.1007/s00285-011-0425-5. Epub 2011 May 25.
4
Visualising a viral RNA genome poised for release from its receptor complex.
J Mol Biol. 2011 May 6;408(3):408-19. doi: 10.1016/j.jmb.2011.02.040. Epub 2011 Mar 2.
5
Simple rules for efficient assembly predict the layout of a packaged viral RNA.
J Mol Biol. 2011 May 6;408(3):399-407. doi: 10.1016/j.jmb.2011.02.039. Epub 2011 Feb 25.
6
Form, symmetry and packing of biomacromolecules. III. Antigenic, receptor and contact binding sites in picornaviruses.
Acta Crystallogr A. 2011 Mar;67(Pt 2):174-89. doi: 10.1107/S0108767310053584. Epub 2011 Feb 16.
8
The impact of viral RNA on assembly pathway selection.
J Mol Biol. 2010 Aug 13;401(2):298-308. doi: 10.1016/j.jmb.2010.05.059. Epub 2010 Jun 1.
9
Vaccination with multimeric L2 fusion protein and L1 VLP or capsomeres to broaden protection against HPV infection.
Vaccine. 2010 Jun 17;28(28):4478-86. doi: 10.1016/j.vaccine.2010.04.039. Epub 2010 Apr 29.
10
Form, symmetry and packing of biomacromolecules. II. Serotypes of human rhinovirus.
Acta Crystallogr A. 2010 May;66(Pt 3):312-26. doi: 10.1107/S0108767310001698. Epub 2010 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验