Suppr超能文献

在 ssRNA 病毒基因组组织中秩序的起源。

On the origin of order in the genome organization of ssRNA viruses.

机构信息

York Centre for Complex Systems Analysis, University of York, York, UK.

出版信息

Biophys J. 2011 Aug 17;101(4):774-80. doi: 10.1016/j.bpj.2011.07.005.

Abstract

Single-stranded RNA (ssRNA) viruses form a major class that includes important human, animal, and plant pathogens. While the principles underlying the structures of their protein capsids are generally well understood, much less is known about the organization of their encapsulated genomic RNAs. Cryo-electron microscopy and x-ray crystallography have revealed striking evidence of order in the packaged genomes of a number of ssRNA viruses. The physical determinants of such order, however, are largely unknown. We study here the relative effect of different energetic contributions, as well as the role of confinement, on the genome packaging of a representative ssRNA virus, the bacteriophage MS2, via a series of biomolecular simulations in which different energy terms are systematically switched off. We show that the bimodal radial density profile of the packaged genome is a consequence of RNA self-repulsion in confinement, suggesting that it should be similar for all ssRNA viruses with a comparable ratio of capsid size/genome length. In contrast, the detailed structure of the outer shell of the RNA density depends crucially on steric contributions from the capsid inner surface topography, implying that the various different polyhedral RNA cages observed in experiment are largely due to differences in the inner surface topography of the capsid.

摘要

单链 RNA(ssRNA)病毒形成了一个主要的类别,其中包括重要的人类、动物和植物病原体。虽然它们的蛋白质衣壳结构的基本原则通常被很好地理解,但对于它们包裹的基因组 RNA 的组织了解得要少得多。冷冻电子显微镜和 X 射线晶体学揭示了许多 ssRNA 病毒包装基因组中存在有序性的惊人证据。然而,这种有序性的物理决定因素在很大程度上是未知的。我们通过一系列生物分子模拟研究了不同能量贡献的相对影响,以及限制对代表性 ssRNA 病毒噬菌体 MS2 的基因组包装的影响,在这些模拟中,系统地关闭了不同的能量项。我们表明,包装基因组的双峰径向密度分布是 RNA 在限制中自我排斥的结果,这表明对于具有可比衣壳大小/基因组长度比的所有 ssRNA 病毒,它应该是相似的。相比之下,RNA 密度的外壳的详细结构取决于衣壳内表面形貌的空间贡献,这意味着实验中观察到的各种不同的多面体 RNA 笼主要是由于衣壳内表面形貌的差异所致。

相似文献

1
On the origin of order in the genome organization of ssRNA viruses.
Biophys J. 2011 Aug 17;101(4):774-80. doi: 10.1016/j.bpj.2011.07.005.
2
Packaging signals in two single-stranded RNA viruses imply a conserved assembly mechanism and geometry of the packaged genome.
J Mol Biol. 2013 Sep 9;425(17):3235-49. doi: 10.1016/j.jmb.2013.06.005. Epub 2013 Jun 11.
3
Simple rules for efficient assembly predict the layout of a packaged viral RNA.
J Mol Biol. 2011 May 6;408(3):399-407. doi: 10.1016/j.jmb.2011.02.039. Epub 2011 Feb 25.
4
In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus.
Nature. 2017 Jan 5;541(7635):112-116. doi: 10.1038/nature20589. Epub 2016 Dec 19.
5
Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ.
Nat Commun. 2016 Aug 26;7:12524. doi: 10.1038/ncomms12524.
6
Viral genomic single-stranded RNA directs the pathway toward a T=3 capsid.
J Mol Biol. 2010 Feb 5;395(5):924-36. doi: 10.1016/j.jmb.2009.11.018. Epub 2009 Nov 12.
8
Measurements of the self-assembly kinetics of individual viral capsids around their RNA genome.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22485-22490. doi: 10.1073/pnas.1909223116. Epub 2019 Sep 30.
9
The impact of viral RNA on the association free energies of capsid protein assembly: bacteriophage MS2 as a case study.
J Mol Model. 2017 Feb;23(2):47. doi: 10.1007/s00894-017-3224-0. Epub 2017 Feb 2.

引用本文的文献

1
Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses.
Subcell Biochem. 2024;105:693-741. doi: 10.1007/978-3-031-65187-8_19.
2
Asymmetric cryo-EM structure of the canonical Allolevivirus Qβ reveals a single maturation protein and the genomic ssRNA in situ.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11519-11524. doi: 10.1073/pnas.1609482113. Epub 2016 Sep 26.
3
Computational virology: From the inside out.
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1610-8. doi: 10.1016/j.bbamem.2016.02.007. Epub 2016 Feb 10.
4
Modeling Viral Capsid Assembly.
Adv Chem Phys. 2014;155:1-68. doi: 10.1002/9781118755815.ch01.
5
Viral genome structures are optimal for capsid assembly.
Elife. 2013 Jun 14;2:e00632. doi: 10.7554/eLife.00632.

本文引用的文献

1
Simple rules for efficient assembly predict the layout of a packaged viral RNA.
J Mol Biol. 2011 May 6;408(3):399-407. doi: 10.1016/j.jmb.2011.02.039. Epub 2011 Feb 25.
3
Mechanisms of capsid assembly around a polymer.
Biophys J. 2010 Jul 21;99(2):619-28. doi: 10.1016/j.bpj.2010.04.035.
4
The impact of viral RNA on assembly pathway selection.
J Mol Biol. 2010 Aug 13;401(2):298-308. doi: 10.1016/j.jmb.2010.05.059. Epub 2010 Jun 1.
5
CHARMM: the biomolecular simulation program.
J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.
8
Structure of Seneca Valley Virus-001: an oncolytic picornavirus representing a new genus.
Structure. 2008 Oct 8;16(10):1555-61. doi: 10.1016/j.str.2008.07.013.
9
The three-dimensional structure of genomic RNA in bacteriophage MS2: implications for assembly.
J Mol Biol. 2008 Jan 18;375(3):824-36. doi: 10.1016/j.jmb.2007.08.067. Epub 2007 Sep 7.
10
Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size.
Biophys J. 2008 Feb 15;94(4):1428-36. doi: 10.1529/biophysj.107.117473. Epub 2007 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验