Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
J Chem Phys. 2013 Feb 7;138(5):054106. doi: 10.1063/1.4775807.
We propose a method for identifying accurate reaction coordinates among a set of trial coordinates. The method applies to special cases where motion along the reaction coordinate follows a one-dimensional Smoluchowski equation. In these cases the reaction coordinate can predict its own short-time dynamical evolution, i.e., the dynamics projected from multiple dimensions onto the reaction coordinate depend only on the reaction coordinate itself. To test whether this property holds, we project an ensemble of short trajectory swarms onto trial coordinates and compare projections of individual swarms to projections of the ensemble of swarms. The comparison, quantified by the Kullback-Leibler divergence, is numerically performed for each isosurface of each trial coordinate. The ensemble of short dynamical trajectories is generated only once by sampling along an initial order parameter. The initial order parameter should separate the reactants and products with a free energy barrier, and distributions on isosurfaces of the initial parameter should be unimodal. The method is illustrated for three model free energy landscapes with anisotropic diffusion. Where exact coordinates can be obtained from Kramers-Langer-Berezhkovskii-Szabo theory, results from the new method agree with the exact results. We also examine characteristics of systems where the proposed method fails. We show how dynamical self-consistency is related (through the Chapman-Kolmogorov equation) to the earlier isocommittor criterion, which is based on longer paths.
我们提出了一种从一组试探坐标中识别准确反应坐标的方法。该方法适用于特殊情况,即反应坐标上的运动遵循一维 Smoluchowski 方程。在这些情况下,反应坐标可以预测其自身的短时间动力学演化,即从多个维度投射到反应坐标上的动力学仅取决于反应坐标本身。为了测试这种特性是否成立,我们将一组短轨迹群投影到试探坐标上,并将单个轨迹群的投影与轨迹群的集合的投影进行比较。通过 Kullback-Leibler 散度对每个试探坐标的每个等位面进行定量比较。通过沿着初始序参量进行采样,仅对初始序参量生成一次短动力学轨迹的集合。初始序参量应该用自由能势垒分离反应物和产物,并且初始参数的等位面的分布应该是单峰的。该方法用三个具有各向异性扩散的自由能景观模型进行了说明。在可以从 Kramers-Langer-Berezhkovskii-Szabo 理论获得精确坐标的地方,新方法的结果与精确结果一致。我们还研究了所提出的方法失败的系统的特征。我们展示了动力学自洽性如何通过 Chapman-Kolmogorov 方程与基于更长路径的早期等位移判据相关联。