Suppr超能文献

通过 NMR 光谱直接观察蛋白质-DNA 界面上的离子对动力学。

Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy.

机构信息

Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States.

出版信息

J Am Chem Soc. 2013 Mar 6;135(9):3613-9. doi: 10.1021/ja312314b. Epub 2013 Feb 25.

Abstract

Ion pairing is one of the most fundamental chemical interactions and is essential for molecular recognition by biological macromolecules. From an experimental standpoint, very little is known to date about ion-pair dynamics in biological macromolecular systems. Absorption, infrared, and Raman spectroscopic methods were previously used to characterize dynamic properties of ion pairs, but these methods can be applied only to small compounds. Here, using NMR (15)N relaxation and hydrogen-bond scalar (15)N-(31)P J-couplings ((h3)J(NP)), we have investigated the dynamics of the ion pairs between lysine side-chain NH3(+) amino groups and DNA phosphate groups at the molecular interface of the HoxD9 homeodomain-DNA complex. We have determined the order parameters and the correlation times for C-N bond rotation and reorientation of the lysine NH3(+) groups. Our data indicate that the NH3(+) groups in the intermolecular ion pairs are highly dynamic at the protein-DNA interface, which should lower the entropic costs for protein-DNA association. Judging from the C-N bond-rotation correlation times along with experimental and quantum-chemically derived (h3)J(NP) hydrogen-bond scalar couplings, it seems that breakage of hydrogen bonds in the ion pairs occurs on a sub-nanosecond time scale. Interestingly, the oxygen-to-sulfur substitution in a DNA phosphate group was found to enhance the mobility of the NH3(+) group in the intermolecular ion pair. This can partially account for the affinity enhancement of the protein-DNA association by the oxygen-to-sulfur substitution, which is a previously observed but poorly understood phenomenon.

摘要

离子对相互作用是最基本的化学相互作用之一,对于生物大分子的分子识别至关重要。从实验的角度来看,目前对于生物大分子体系中离子对动力学的了解非常有限。以前曾使用吸收、红外和拉曼光谱方法来表征离子对的动态特性,但这些方法只能应用于小分子。在这里,我们使用 NMR(15)N 弛豫和氢键标量(15)N-(31)P J 耦合((h3)J(NP)),研究了 HoxD9 同源域-DNA 复合物分子界面中赖氨酸侧链 NH3(+)氨基与 DNA 磷酸基团之间的离子对的动力学。我们确定了 C-N 键旋转和赖氨酸 NH3(+)基团取向的顺序参数和相关时间。我们的数据表明,蛋白质-DNA 界面处的分子间离子对中的 NH3(+)基团具有高度动态性,这应该降低蛋白质-DNA 结合的熵成本。从 C-N 键旋转相关时间以及实验和量子化学推导的(h3)J(NP)氢键标量耦合来看,似乎离子对中的氢键在亚纳秒时间尺度上断裂。有趣的是,发现 DNA 磷酸基团中的氧到硫取代会增强分子间离子对中 NH3(+)基团的迁移率。这部分解释了蛋白质-DNA 结合亲和力增强的原因,这种氧到硫取代是以前观察到但理解不足的现象。

相似文献

引用本文的文献

2
Protein Side-Chain-DNA Contacts Probed by Fast Magic-Angle Spinning NMR.利用快速魔角旋转 NMR 探测蛋白质侧链与 DNA 的接触。
J Phys Chem B. 2020 Dec 10;124(49):11089-11097. doi: 10.1021/acs.jpcb.0c08150. Epub 2020 Nov 25.
3
Dynamics of Ionic Interactions at Protein-Nucleic Acid Interfaces.蛋白质-核酸界面处离子相互作用的动力学。
Acc Chem Res. 2020 Sep 15;53(9):1802-1810. doi: 10.1021/acs.accounts.0c00212. Epub 2020 Aug 26.
6
Detecting Counterion Dynamics in DNA-Protein Association.检测 DNA-蛋白质结合中的反离子动力学。
Angew Chem Int Ed Engl. 2020 Jan 20;59(4):1465-1468. doi: 10.1002/anie.201910960. Epub 2019 Dec 3.
10
Phosphorothioated DNA Is Shielded from Oxidative Damage.硫代磷酸酯 DNA 可免受氧化损伤。
Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.00104-19. Print 2019 Apr 15.

本文引用的文献

5
Nonspecifically bound proteins spin while diffusing along DNA.非特异性结合蛋白在沿DNA扩散的同时进行旋转。
Nat Struct Mol Biol. 2009 Dec;16(12):1224-9. doi: 10.1038/nsmb.1716. Epub 2009 Nov 8.
10
Visualizing one-dimensional diffusion of proteins along DNA.可视化蛋白质沿DNA的一维扩散。
Nat Struct Mol Biol. 2008 Aug;15(8):768-74. doi: 10.1038/nsmb.1441. Epub 2008 Aug 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验