Center for Vaccine Development; Division of Geographic Medicine; Baltimore, MD USA; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA.
Hum Vaccin Immunother. 2013 Jul;9(7):1558-64. doi: 10.4161/hv.23248. Epub 2013 Feb 13.
Bacterial live vector vaccines represent a vaccine development strategy that offers exceptional flexibility. In this approach, genes encoding protective antigens of unrelated bacterial, viral or parasitic pathogens are expressed in an attenuated bacterial vaccine strain that delivers these foreign antigens to the immune system, thereby eliciting relevant immune responses. Rather than expressing these antigens using low copy expression plasmids, here we pursue expression of foreign proteins from the live vector chromosome. Our strategy is designed to compensate for the inherent disadvantage of loss of gene dosage (vs. plasmid-based expression) by integrating antigen-encoding gene cassettes into multiple chromosomal sites already inactivated in an attenuated Salmonella enterica serovar Typhi vaccine candidate. We tested expression of a cassette encoding the green fluorescent protein (GFPuv) integrated separately into native guaBA, htrA or clyA chromosomal loci. Using single integrations, we show that expression levels of GFPuv are significantly affected by the site of integration, regardless of the inclusion of additional strong promoters within the incoming cassette. Using cassettes integrated into both guaBA and htrA, we observe cumulative synthesis levels from two integration sites superior to single integrations. Most importantly, we observe that GFPuv expression increases in a growth phase-dependent manner, suggesting that foreign antigen synthesis may be "tuned" to the physiology of the live vaccine. We expect this novel platform expression technology to prove invaluable in the development of a wide variety of multivalent live vector vaccines, capable of expressing multiple antigens from both chromosomal and plasmid-based expression systems within a single strain.
细菌活体载体疫苗代表了一种极具灵活性的疫苗开发策略。在这种方法中,不相关细菌、病毒或寄生虫病原体的保护性抗原的基因在减毒的细菌疫苗株中表达,这些外来抗原被递送到免疫系统,从而引发相关的免疫反应。我们不是使用低拷贝表达质粒来表达这些抗原,而是在这里从活体载体染色体表达外来蛋白。我们的策略旨在通过将编码抗原的基因盒整合到减毒的伤寒沙门氏菌血清型 Typhi 候选疫苗中已失活的多个染色体位点来弥补基因剂量损失的固有劣势(与基于质粒的表达相比)。我们测试了分别整合到天然guaBA、htrA 或 clyA 染色体基因座的编码绿色荧光蛋白(GFPuv)的盒的表达。通过单整合,我们表明 GFPuv 的表达水平受到整合位点的显著影响,而不管整合入的盒内是否包含额外的强启动子。使用整合到guaBA 和 htrA 的盒,我们观察到来自两个整合位点的累积合成水平优于单整合。最重要的是,我们观察到 GFPuv 的表达呈生长阶段依赖性增加,表明外来抗原的合成可能“调谐”到活体疫苗的生理学。我们预计这种新型的平台表达技术在开发各种多价活体载体疫苗方面将非常有价值,能够在单个菌株中表达来自染色体和质粒表达系统的多种抗原。