Suppr超能文献

行走时步时不对称的代谢和力学代价。

The metabolic and mechanical costs of step time asymmetry in walking.

机构信息

Structure and Motion Lab, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK.

出版信息

Proc Biol Sci. 2013 Feb 13;280(1756):20122784. doi: 10.1098/rspb.2012.2784. Print 2013 Apr 7.

Abstract

Animals use both pendular and elastic mechanisms to minimize energy expenditure during terrestrial locomotion. Elastic gaits can be either bilaterally symmetric (e.g. run and trot) or asymmetric (e.g. skip, canter and gallop), yet only symmetric pendular gaits (e.g. walk) are observed in nature. Does minimizing metabolic and mechanical power constrain pendular gaits to temporal symmetry? We measured rates of metabolic energy expenditure and calculated mechanical power production while healthy humans walked symmetrically and asymmetrically at a range of step and stride times. We found that walking with a 42 per cent step time asymmetry required 80 per cent (2.5 W kg(-1)) more metabolic power than preferred symmetric gait. Positive mechanical power production increased by 64 per cent (approx. 0.24 W kg(-1)), paralleling the increases we observed in metabolic power. We found that when walking asymmetrically, subjects absorbed more power during double support than during symmetric walking and compensated by increasing power production during single support. Overall, we identify inherent metabolic and mechanical costs to gait asymmetry and find that symmetry is optimal in healthy human walking.

摘要

动物在陆地运动中使用摆动和弹性机制来最小化能量消耗。弹性步态可以是双边对称的(例如跑和踱步)或不对称的(例如跳跃、慢跑和疾驰),但自然界中只观察到对称的摆动步态(例如行走)。最小化代谢和机械功率是否将摆动步态限制为时间对称?我们测量了代谢能量消耗率,并计算了健康人在一系列步幅和步长时间下对称和不对称行走时的机械功率产生。我们发现,以 42%的步幅时间不对称行走比首选对称步态多消耗 80%(2.5 W kg(-1))的代谢功率。正机械功率产生增加了 64%(约 0.24 W kg(-1)),与我们观察到的代谢功率增加相平行。我们发现,当不对称行走时,与对称行走相比,受试者在双支撑期间吸收更多的能量,并通过增加单支撑期间的功率产生来补偿。总的来说,我们确定了步态不对称的固有代谢和机械成本,发现对称是健康人行走的最佳选择。

相似文献

1
The metabolic and mechanical costs of step time asymmetry in walking.
Proc Biol Sci. 2013 Feb 13;280(1756):20122784. doi: 10.1098/rspb.2012.2784. Print 2013 Apr 7.
2
The human preference for symmetric walking often disappears when one leg is constrained.
J Physiol. 2021 Feb;599(4):1243-1260. doi: 10.1113/JP280509. Epub 2020 Nov 24.
3
Fifteen observations on the structure of energy-minimizing gaits in many simple biped models.
J R Soc Interface. 2011 Jan 6;8(54):74-98. doi: 10.1098/rsif.2009.0544. Epub 2010 Jun 11.
4
Disentangling the energetic costs of step time asymmetry and step length asymmetry in human walking.
J Exp Biol. 2021 Jun 15;224(12). doi: 10.1242/jeb.242258. Epub 2021 Jun 11.
5
Step time asymmetry but not step length asymmetry is adapted to optimize energy cost of split-belt treadmill walking.
J Physiol. 2020 Sep;598(18):4063-4078. doi: 10.1113/JP279195. Epub 2020 Jul 28.
6
Step time asymmetry increases metabolic energy expenditure during running.
Eur J Appl Physiol. 2018 Oct;118(10):2147-2154. doi: 10.1007/s00421-018-3939-3. Epub 2018 Jul 19.
8
Reduced joint motion supersedes asymmetry in explaining increased metabolic demand during walking with mechanical restriction.
J Biomech. 2021 Sep 20;126:110621. doi: 10.1016/j.jbiomech.2021.110621. Epub 2021 Jul 9.
10
Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
J Neuroeng Rehabil. 2021 Feb 5;18(1):27. doi: 10.1186/s12984-021-00825-3.

引用本文的文献

1
Changes in gait parameters using two types of step training in a patient following hemiplegic stroke.
J Phys Ther Sci. 2025 Jun;37(6):316-319. doi: 10.1589/jpts.37.316. Epub 2025 Jun 1.
2
Gait adaptations in step length and push-off force during walking with functional asymmetry.
Front Bioeng Biotechnol. 2025 Mar 28;13:1550710. doi: 10.3389/fbioe.2025.1550710. eCollection 2025.
4
Three-dimensional Evaluation of Gait: Kinetics, Kinematics, and Electromyographic in Patients with Mucopolysacharidosis Types IV and VI.
Rev Bras Ortop (Sao Paulo). 2024 Jul 22;59(5):e737-e744. doi: 10.1055/s-0044-1786200. eCollection 2024 Oct.
5
Single-belt vs. split-belt treadmill symmetry training: is there a perfect choice for gait rehabilitation post-stroke?
Front Physiol. 2024 Jul 24;15:1409304. doi: 10.3389/fphys.2024.1409304. eCollection 2024.
6
Stroke walking and balance characteristics via principal component analysis.
Sci Rep. 2024 May 7;14(1):10465. doi: 10.1038/s41598-024-60943-5.
8
Gait Adaptation to Asymmetric Hip Stiffness Applied by a Robotic Exoskeleton.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:791-799. doi: 10.1109/TNSRE.2024.3354517. Epub 2024 Feb 19.
9
Gait adaptation to asymmetric hip stiffness applied by a robotic exoskeleton.
bioRxiv. 2023 Oct 10:2023.10.10.561679. doi: 10.1101/2023.10.10.561679.
10
A sensory signal related to left-right symmetry modulates intra- and interlimb cutaneous reflexes during locomotion in intact cats.
Front Syst Neurosci. 2023 Jun 9;17:1199079. doi: 10.3389/fnsys.2023.1199079. eCollection 2023.

本文引用的文献

1
Coordination of push-off and collision determine the mechanical work of step-to-step transitions when isolated from human walking.
Gait Posture. 2012 Feb;35(2):292-7. doi: 10.1016/j.gaitpost.2011.09.102. Epub 2011 Oct 24.
2
The mathematical description of the body centre of mass 3D path in human and animal locomotion.
J Biomech. 2011 May 17;44(8):1471-7. doi: 10.1016/j.jbiomech.2011.03.014. Epub 2011 Apr 3.
3
Mechanics and energetics of step-to-step transitions isolated from human walking.
J Exp Biol. 2010 Dec 15;213(Pt 24):4265-71. doi: 10.1242/jeb.044214.
4
Measured and predicted mechanical internal work in human locomotion.
Hum Mov Sci. 2011 Feb;30(1):90-104. doi: 10.1016/j.humov.2010.05.012. Epub 2010 Nov 5.
5
Gait symmetry improves in childhood--a 4-year follow-up of foot loading data.
Gait Posture. 2010 Oct;32(4):464-8. doi: 10.1016/j.gaitpost.2010.07.002. Epub 2010 Aug 3.
6
Fifteen observations on the structure of energy-minimizing gaits in many simple biped models.
J R Soc Interface. 2011 Jan 6;8(54):74-98. doi: 10.1098/rsif.2009.0544. Epub 2010 Jun 11.
7
Effects of obesity on the biomechanics of walking at different speeds.
Med Sci Sports Exerc. 2007 Sep;39(9):1632-41. doi: 10.1249/mss.0b013e318076b54b.
8
Mechanical power and efficiency of level walking with different stride rates.
J Exp Biol. 2007 Sep;210(Pt 18):3255-65. doi: 10.1242/jeb.000950.
9
Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees.
Gait Posture. 2007 Feb;25(2):250-8. doi: 10.1016/j.gaitpost.2006.04.013. Epub 2006 Jun 5.
10
Energetic consequences of walking like an inverted pendulum: step-to-step transitions.
Exerc Sport Sci Rev. 2005 Apr;33(2):88-97. doi: 10.1097/00003677-200504000-00006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验