Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112.
Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112; Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112.
J Biol Chem. 2013 Mar 22;288(12):8209-8221. doi: 10.1074/jbc.M113.451567. Epub 2013 Feb 13.
Ligation of polyubiquitin chains to proteins is a fundamental post-translational modification, often resulting in targeted degradation of conjugated proteins. Attachment of polyubiquitin chains requires the activities of an E1 activating enzyme, an E2 carrier protein, and an E3 ligase. The mechanism by which polyubiquitin chains are formed remains largely speculative, especially for RING-based ligases. The tripartite motif (TRIM) superfamily of ligases functions in many cellular processes including innate immunity, cellular localization, development and differentiation, signaling, and cancer progression. The present results show that TRIM ligases catalyze polyubiquitin chain formation in the absence of substrate, the rates of which can be used as a functional readout of enzyme function. Initial rate studies under biochemically defined conditions show that TRIM32 and TRIM25 are specific for the Ubc5 family of E2-conjugating proteins and, along with TRIM5α, exhibit cooperative kinetics with respect to Ubc5 concentration, with submicromolar [S]0.5 and Hill coefficients of 3-5, suggesting they possess multiple binding sites for their cognate E2-ubiquitin thioester. Mutation studies reveal a second, non-canonical binding site encompassing the C-terminal Ubc5α-helix. Polyubiquitin chain formation requires TRIM subunit oligomerization through the conserved coiled-coil domain, but can be partially replaced by fusing the catalytic domain to GST to promote dimerization. Other results suggest that TRIM32 assembles polyubiquitin chains as a Ubc5-linked thioester intermediate. These results represent the first detailed mechanistic study of TRIM ligase activity and provide a functional context for oligomerization observed in the superfamily.
多聚泛素链与蛋白质的连接是一种基本的翻译后修饰,通常导致共轭蛋白质的靶向降解。多聚泛素链的附着需要 E1 激活酶、E2 载体蛋白和 E3 连接酶的活性。多聚泛素链形成的机制在很大程度上仍在推测中,尤其是对于基于 RING 的连接酶。连接酶的三联基序 (TRIM) 超家族在许多细胞过程中发挥作用,包括先天免疫、细胞定位、发育和分化、信号转导以及癌症进展。本研究结果表明,TRIM 连接酶在没有底物的情况下催化多聚泛素链的形成,其速率可作为酶功能的功能读数。在生化定义条件下的初始速率研究表明,TRIM32 和 TRIM25 特异性针对 Ubc5 家族的 E2 缀合蛋白,并且与 TRIM5α 一起,对 Ubc5 浓度表现出协同动力学,其亚微摩尔 [S]0.5 和 Hill 系数为 3-5,表明它们具有多个与其同源 E2-泛素硫酯的结合位点。突变研究揭示了第二个非典型结合位点,包含 C 末端 Ubc5α-螺旋。多聚泛素链的形成需要通过保守的卷曲螺旋结构域的 TRIM 亚基寡聚化,但可以通过将催化结构域融合到 GST 上来部分取代,以促进二聚化。其他结果表明,TRIM32 作为 Ubc5 连接的硫酯中间产物组装多聚泛素链。这些结果代表了对 TRIM 连接酶活性的第一个详细的机制研究,并为超家族中观察到的寡聚化提供了功能背景。