CR-UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research, Sutton, Surrey, UK.
Magn Reson Med. 2014 Jan;71(1):411-20. doi: 10.1002/mrm.24649. Epub 2013 Feb 13.
In addition to the diffusion coefficient, fitting the intravoxel incoherent motion model to multiple b-value diffusion-weighted MR data gives pseudo-diffusion measures associated with rapid signal attenuation at low b-values that are of use in the assessment of a number of pathologies. When summary measures are required, such as the average parameter for a region of interest, least-squares based methods give adequate estimation accuracy. However, using least-squares methods for pixel-wise fitting typically gives noisy estimates, especially for the pseudo-diffusion parameters, which limits the applicability of the approach for assessing spatial features and heterogeneity. In this article, a Bayesian approach using a shrinkage prior model is proposed and is shown to substantially reduce estimation uncertainty so that spatial features in the parameters maps are more clearly apparent. The Bayesian approach has no user-defined parameters, so measures of parameter variation (heterogeneity) over regions of interest are determined by the data alone, whereas it is shown that for the least-squares estimates, measures of variation are essentially determined by user-defined constraints on the parameters. Use of a Bayesian shrinkage prior approach is, therefore, recommended for intravoxel incoherent motion modeling.
除了扩散系数外,将体素内不相干运动模型拟合到多个 b 值扩散加权磁共振数据中,还可以得到与低 b 值下快速信号衰减相关的伪扩散测量值,这些测量值可用于评估多种病变。当需要汇总测量值时(例如,感兴趣区域的平均参数),基于最小二乘法的方法可以提供足够的估计精度。然而,对于像素级拟合,使用最小二乘法通常会得到噪声估计值,特别是对于伪扩散参数,这限制了该方法在评估空间特征和异质性方面的适用性。在本文中,提出了一种基于贝叶斯的收缩先验模型的方法,该方法可显著降低估计不确定性,从而使参数图中的空间特征更加明显。贝叶斯方法没有用户定义的参数,因此,感兴趣区域内参数变化(异质性)的度量值仅由数据确定,而对于最小二乘估计值,变化的度量值本质上由用户定义的参数约束确定。因此,建议在体素内不相干运动建模中使用基于贝叶斯收缩先验的方法。