Chan Kwok-Shing, Ma Yixin, Lee Hansol, Marques José P, Olesen Jonas, Coelho Santiago, Novikov Dmitry S, Jespersen Sune, Huang Susie Y, Lee Hong-Hsi
Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States.
Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
bioRxiv. 2024 Dec 17:2024.12.13.628450. doi: 10.1101/2024.12.13.628450.
Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s). We performed diffusion MRI measurements in 15 healthy volunteers at multiple diffusion times (13-30 ms) and -values up to 17.5 ms/μm. The anisotropic Kärger model was applied to estimate the exchange time between intra-neurite and extracellular water in gray matter. The estimated exchange time across the cortical ribbon was around (median±interquartile range) 13±8 ms on Connectome 2.0, substantially faster than that measured using an imaging protocol compatible with Connectome 1.0-alike systems on the same cohort. Our investigation suggested that the NEXI exchange time estimation using a Connectome 1.0 compatible protocol was more prone to residual noise floor biases due to the small time-dependent signal contrasts across diffusion times when the exchange is fast (≤20 ms). Furthermore, spatial variation of exchange time was observed across the cortex, where the motor cortex, somatosensory cortex and visual cortex exhibit longer exchange times compared to other cortical regions. Non-linear fitting for the anisotropic Kärger model was accelerated 100 times using a GPU-based pipeline compared to the conventional CPU-based approach. This study highlighted the importance of the chosen diffusion times and measures to address Rician noise in dMRI data, which can have a substantial impact on the estimated NEXI exchange time and require extra attention when comparing NEXI results between various hardware setups.
由于相对快速的交换过程对高信噪比和短扩散时间的要求,通过扩散-水交换成像评估活体人脑的组织微观结构和膜完整性具有挑战性。这项工作的目标是使用配备超高性能梯度系统(最大梯度强度=500 mT/m,最大 slew 率=600 T/m/s)的先进 Connectome 2.0 扫描仪,证明对脑灰质内组织微观几何结构和水交换进行成像的可行性。我们对 15 名健康志愿者在多个扩散时间(13 - 30 ms)和高达 17.5 ms/μm 的(\lambda)值下进行了扩散磁共振成像测量。应用各向异性 Kärger 模型来估计灰质中神经突内水和细胞外水之间的交换时间。在 Connectome 2.0 上,跨皮质带估计的交换时间约为(中位数±四分位间距)13±8 ms,比在同一队列中使用与 Connectome 1.0 类似系统兼容的成像方案测量的速度要快得多。我们的研究表明,当交换速度较快(≤20 ms)时,由于跨扩散时间的时间依赖性信号对比度较小,使用与 Connectome 1.0 兼容的协议进行 NEXI(神经突外-细胞内交换)交换时间估计更容易受到残余噪声本底偏差的影响。此外,在整个皮质中观察到交换时间的空间变化,其中运动皮质、体感皮质和视觉皮质的交换时间比其他皮质区域更长。与传统的基于 CPU 的方法相比,使用基于 GPU 的管道对各向异性 Kärger 模型进行非线性拟合的速度加快了 100 倍。这项研究强调了选择扩散时间和测量方法以解决扩散磁共振成像数据中的莱斯噪声的重要性,这可能对估计的 NEXI 交换时间产生重大影响,并且在比较不同硬件设置之间的 NEXI 结果时需要格外注意。