Suppr超能文献

基于体素内不相干运动模型的扩散加权 MRI 中贝叶斯拟合方法的比较模拟研究。

A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI.

机构信息

Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway.

出版信息

Magn Reson Med. 2017 Dec;78(6):2373-2387. doi: 10.1002/mrm.26598. Epub 2017 Mar 31.

Abstract

PURPOSE

To assess the performance of various least squares and Bayesian modeling approaches to parameter estimation in intravoxel incoherent motion (IVIM) modeling of diffusion-weighted MRI data.

METHODS

Simulated tissue models of different type (breast/liver) and morphology (discrete/continuous) were used to generate noisy data according to the IVIM model at several signal-to-noise ratios. IVIM parameter maps were generated using six different approaches, including full nonlinear least squares (LSQ), segmented least squares (SEG), Bayesian modeling with a Gaussian shrinkage prior (BSP) and Bayesian modeling with a spatial homogeneity prior (FBM), plus two modified approaches. Estimators were compared by calculating the median absolute percentage error and deviation, and median percentage bias.

RESULTS

The Bayesian modeling approaches consistently outperformed the least squares approaches, with lower relative error and deviation, and provided cleaner parameter maps with reduced erroneous heterogeneity. However, a weakness of the Bayesian approaches was exposed, whereby certain tissue features disappeared completely in regions of high parameter uncertainty. Lower error and deviation were generally afforded by FBM compared with BSP, at the cost of higher bias.

CONCLUSIONS

Bayesian modeling is capable of producing more visually pleasing IVIM parameter maps than least squares approaches, but their potential to mask certain tissue features demands caution during implementation. Magn Reson Med 78:2373-2387, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

评估在扩散加权磁共振成像(DWI)数据的体素内不相干运动(IVIM)建模中,各种最小二乘和贝叶斯建模方法在参数估计方面的性能。

方法

使用不同类型(乳腺/肝脏)和形态(离散/连续)的模拟组织模型,根据 IVIM 模型在几个信噪比下生成噪声数据。使用六种不同的方法生成 IVIM 参数图,包括全非线性最小二乘(LSQ)、分段最小二乘(SEG)、具有高斯收缩先验的贝叶斯建模(BSP)和具有空间均匀性先验的贝叶斯建模(FBM),以及两种改进的方法。通过计算中位数绝对百分比误差和偏差以及中位数百分比偏差来比较估计器。

结果

贝叶斯建模方法始终优于最小二乘方法,具有更低的相对误差和偏差,并提供了更清洁的参数图,减少了错误的异质性。然而,贝叶斯方法的一个弱点暴露出来,即某些组织特征在高参数不确定性区域完全消失。与 BSP 相比,FBM 通常提供更低的误差和偏差,但代价是更高的偏差。

结论

贝叶斯建模能够生成比最小二乘方法更具视觉吸引力的 IVIM 参数图,但在实施过程中需要谨慎,因为它们有可能掩盖某些组织特征。磁共振医学 78:2373-2387,2017。© 2017 国际磁共振学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验