Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
PLoS One. 2013;8(2):e55216. doi: 10.1371/journal.pone.0055216. Epub 2013 Feb 8.
The species from the order Xanthomonadales, which harbors many important plant pathogens and some human pathogens, are currently distinguished primarily on the basis of their branching in the 16S rRNA tree. No molecular or biochemical characteristic is known that is specific for these bacteria. Phylogenetic and comparative analyses were conducted on 26 sequenced Xanthomonadales genomes to delineate their branching order and to identify molecular signatures consisting of conserved signature indels (CSIs) in protein sequences that are specific for these bacteria. In a phylogenetic tree based upon sequences for 28 proteins, Xanthomonadales species formed a strongly supported clade with Rhodanobacter sp. 2APBS1 as its deepest branch. Comparative analyses of protein sequences have identified 13 CSIs in widely distributed proteins such as GlnRS, TypA, MscL, LysRS, LipA, Tgt, LpxA, TolQ, ParE, PolA and TyrB that are unique to all species/strains from this order, but not found in any other bacteria. Fifteen additional CSIs in proteins (viz. CoxD, DnaE, PolA, SucA, AsnB, RecA, PyrG, LigA, MutS and TrmD) are uniquely shared by different Xanthomonadales except Rhodanobacter and in a few cases by Pseudoxanthomonas species, providing further support for the deep branching of these two genera. Five other CSIs are commonly shared by Xanthomonadales and 1-3 species from the orders Chromatiales, Methylococcales and Cardiobacteriales suggesting that these deep branching orders of Gammaproteobacteria might be specifically related. Lastly, 7 CSIs in ValRS, CarB, PyrE, GlyS, RnhB, MinD and X001065 are commonly shared by Xanthomonadales and a limited number of Beta- or Gamma-proteobacteria. Our analysis indicates that these CSIs have likely originated independently and they are not due to lateral gene transfers. The Xanthomonadales-specific CSIs reported here provide novel molecular markers for the identification of these important plant and human pathogens and also as potential targets for development of drugs/agents that specifically target these bacteria.
黄单胞菌目下的物种栖息着许多重要的植物病原体和一些人类病原体,目前主要根据 16S rRNA 树的分支来区分。目前还没有已知的特定于这些细菌的分子或生化特征。对 26 个测序的黄单胞菌目基因组进行了系统发育和比较分析,以描绘它们的分支顺序,并确定由蛋白质序列中保守特征缺失/插入 (CSIs) 组成的分子特征,这些 CSIs 是这些细菌所特有的。在基于 28 种蛋白质序列的系统发育树中,黄单胞菌目物种与 Rhodanobacter sp. 2APBS1 一起形成了一个强有力的分支,后者是其最深处的分支。蛋白质序列的比较分析确定了 13 个 CSI 广泛分布于各种蛋白质中,如 GlnRS、TypA、MscL、LysRS、LipA、Tgt、LpxA、TolQ、ParE、PolA 和 TyrB,这些 CSI 是该目所有物种/菌株所特有的,但在任何其他细菌中都没有发现。另外 15 个 CSI 存在于蛋白质中(即 CoxD、DnaE、PolA、SucA、AsnB、RecA、PyrG、LigA、MutS 和 TrmD),这些 CSI 仅在黄单胞菌目除了 Rhodanobacter 以外的不同种属中共享,在少数情况下,假黄单胞菌属也有共享,这进一步支持了这两个属的深分支。另外 5 个 CSI 普遍存在于黄单胞菌目和 Chromatiales、Methylococcales 和 Cardiobacteriales 目下的 1-3 种细菌中,这表明这些 gammaproteobacteria 的深分支目可能具有特定的相关性。最后,ValRS、CarB、PyrE、GlyS、RnhB、MinD 和 X001065 中的 7 个 CSI 广泛存在于黄单胞菌目和少数β-或γ-变形菌中。我们的分析表明,这些 CSI 可能是独立起源的,而不是由于水平基因转移。本研究报道的黄单胞菌目特有 CSI 为鉴定这些重要的植物和人类病原体提供了新的分子标记,也为开发专门针对这些细菌的药物/制剂提供了潜在靶点。