Suppr超能文献

理解十进制比例:离散表示、并行访问和对零的特权处理。

Understanding decimal proportions: discrete representations, parallel access, and privileged processing of zero.

机构信息

University of Minnesota, Educational Psychology Department, 250 Education Sciences Building, 56 East River Rd., Minneapolis, MN 55455, United States.

出版信息

Cogn Psychol. 2013 May;66(3):283-301. doi: 10.1016/j.cogpsych.2013.01.002. Epub 2013 Feb 13.

Abstract

Much of the research on mathematical cognition has focused on the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9, with considerably less attention paid to more abstract number classes. The current research investigated how people understand decimal proportions--rational numbers between 0 and 1 expressed in the place-value symbol system. The results demonstrate that proportions are represented as discrete structures and processed in parallel. There was a semantic interference effect: When understanding a proportion expression (e.g., "0.29"), both the correct proportion referent (e.g., 0.29) and the incorrect natural number referent (e.g., 29) corresponding to the visually similar natural number expression (e.g., "29") are accessed in parallel, and when these referents lead to conflicting judgments, performance slows. There was also a syntactic interference effect, generalizing the unit-decade compatibility effect for natural numbers: When comparing two proportions, their tenths and hundredths components are processed in parallel, and when the different components lead to conflicting judgments, performance slows. The results also reveal that zero decimals--proportions ending in zero--serve multiple cognitive functions, including eliminating semantic interference and speeding processing. The current research also extends the distance, semantic congruence, and SNARC effects from natural numbers to decimal proportions. These findings inform how people understand the place-value symbol system, and the mental implementation of mathematical symbol systems more generally.

摘要

大部分关于数学认知的研究都集中在数字 1、2、3、4、5、6、7、8 和 9 上,而对更抽象的数字类的关注则相对较少。本研究调查了人们如何理解十进制比例——0 到 1 之间的有理数,用位值符号系统表示。结果表明,比例被表示为离散的结构,并并行处理。存在语义干扰效应:当理解比例表达式(例如“0.29”)时,正确的比例参照(例如“0.29”)和与视觉上相似的自然数表达式(例如“29”)对应的错误自然数参照(例如“29”)会并行访问,当这些参照导致冲突判断时,表现会变慢。也存在句法干扰效应,将自然数的单位-十进制兼容性效应推广:当比较两个比例时,它们的十分位和百分位组件会并行处理,当不同的组件导致冲突判断时,表现会变慢。研究结果还表明,零小数——以零结尾的比例——具有多种认知功能,包括消除语义干扰和加速处理。本研究还将自然数中的距离、语义一致性和 SNARC 效应扩展到了十进制比例。这些发现为人们理解位值符号系统以及更普遍的数学符号系统的心理实现提供了信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验