Joshi-Barr Shivanjali, Karpiak Jerome V, Ner Yogesh, Wen Jessica H, Engler Adam J, Almutairi Adah
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, CA, USA.
J Vis Exp. 2013 Feb 12(72):50018. doi: 10.3791/50018.
Complex tissue culture matrices, in which types and concentrations of biological stimuli (e.g. growth factors, inhibitors, or small molecules) or matrix structure (e.g. composition, concentration, or stiffness of the matrix) vary over space, would enable a wide range of investigations concerning how these variables affect cell differentiation, migration, and other phenomena. The major challenge in creating layered matrices is maintaining the structural integrity of layer interfaces without diffusion of individual components from each layer. Current methodologies to achieve this include photopatterning, lithography, sequential functionalization5, freeze drying, microfluidics, or centrifugation, many of which require sophisticated instrumentation and technical skills. Others rely on sequential attachment of individual layers, which may lead to delamination of layers. DGMP overcomes these issues by using an inert density modifier such as iodixanol to create layers of varying densities. Since the density modifier can be mixed with any prepolymer or bioactive molecule, DGMP allows each scaffold layer to be customized. Simply varying the concentration of the density modifier prevents mixing of adjacent layers while they remain aqueous. Subsequent single step polymerization gives rise to a structurally continuous multilayered scaffold, in which each layer has distinct chemical and mechanical properties. The density modifier can be easily removed with sufficient rinsing without perturbation of the individual layers or their components. This technique is therefore well suited for creating hydrogels of various sizes, shapes, and materials. A protocol for fabricating a 2D-polyethylene glycol (PEG) gel, in which alternating layers incorporate RGDS-350, is outlined below. We use PEG because it is biocompatible and inert. RGDS, a cell adhesion peptide, is used to demonstrate spatial restriction of a biological cue, and the conjugation of a fluorophore (Alexa Fluor 350) enables us to visually distinguish various layers. This procedure can be adapted for other materials (e.g. collagen, hyaluronan, etc.) and can be extended to fabricate 3D gels with some modifications.
复杂组织培养基质中,生物刺激物(如生长因子、抑制剂或小分子)的类型和浓度或基质结构(如基质的组成、浓度或硬度)会随空间变化,这将有助于开展一系列关于这些变量如何影响细胞分化、迁移及其他现象的研究。制造分层基质的主要挑战在于保持层界面的结构完整性,同时防止各层的单个成分扩散。目前实现这一目标的方法包括光图案化、光刻、顺序功能化、冷冻干燥、微流控或离心,其中许多方法需要复杂的仪器和技术技能。其他方法则依赖于各层的顺序附着,这可能导致层的分层。双梯度微流控光刻法(DGMP)通过使用碘克沙醇等惰性密度调节剂来创建不同密度的层,从而克服了这些问题。由于密度调节剂可以与任何预聚物或生物活性分子混合,DGMP允许对每个支架层进行定制。只需改变密度调节剂的浓度,就能防止相邻层在保持水性的同时混合。随后的单步聚合产生了结构连续的多层支架,其中每层都具有独特的化学和机械性能。通过充分冲洗,可以轻松去除密度调节剂,而不会干扰各层或其成分。因此,该技术非常适合制造各种尺寸、形状和材料的水凝胶。下面概述了制造二维聚乙二醇(PEG)凝胶的方案,其中交替层包含RGDS - 350。我们使用PEG是因为它具有生物相容性和惰性。RGDS是一种细胞粘附肽,用于证明生物信号的空间限制,荧光团(Alexa Fluor 350)的共轭使我们能够直观地区分不同的层。该程序可适用于其他材料(如胶原蛋白、透明质酸等),并可通过一些修改扩展到制造三维凝胶。