Suppr超能文献

三臂可生物降解大分子单体共聚膜的表面改性——一种用于改性组织工程支架的分析平台。

Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds.

作者信息

Müller Benno M, Loth Rudi, Hoffmeister Peter-Georg, Zühl Friederike, Kalbitzer Liv, Hacker Michael C, Schulz-Siegmund Michaela

机构信息

Pharmaceutical Technology, Institute of Pharmacy, Leipzig University, Eilenburger Straße 15a, Leipzig 04317, Germany.

Biophysical Chemistry, Institute of Biochemistry, Leipzig University, Johannisallee 21, Leipzig 04103, Germany.

出版信息

Acta Biomater. 2017 Mar 15;51:148-160. doi: 10.1016/j.actbio.2017.01.018. Epub 2017 Jan 7.

Abstract

UNLABELLED

The concept of macromers allows for a broad adjustment of biomaterial properties by macromer chemistry or copolymerization. Copolymerization strategies can also be used to introduce reactive sites for subsequent surface modification. Control over surface features enables adjustment of cellular reactions with regard to site and object of implantation. We designed macromer-derived polymer films which function as non-implantable analytical substrates for the investigation of surface properties of equally composed scaffolds for bone tissue engineering. To this end, a toolbox of nine different biodegradable, three-armed macromers was thermally cross-copolymerized with poly(ethylene glycol)-methacrylate (PEG-MA) to films. Subsequent activation of PEG-hydroxyl groups with succinic anhydride and N-hydroxysuccinimid allowed for covalent surface modification. We quantified the capacity to immobilize analytes of low (amino-functionalized fluorescent dye, Fcad, and RGD-peptides) and high (alkaline phosphatase, ALP) molecular weight. Fcad grafting level was controlled by macromer chemistry, content and molecular weight of PEG-MA, but also the solvent used for film synthesis. Fcad molar amount per surface area was twentyfive times higher on high-swelling compared to low-swelling films, but differences became smaller when large ALP (appr. 2:1) were employed. Similarly, small differences were observed on RGD peptide functionalized films that were investigated by cell adhesion studies. Presentation of PEG-derivatives on surfaces was visualized by atomic force microscopy (AFM) which unraveled composition-dependent domain formation influencing fluorescent dye immobilization. Surface wetting characteristics were investigated via static water contact angle. We conclude that macromer ethoxylation and lactic acid content determined film swelling, PEG domain formation and eventually efficiency of surface decoration.

STATEMENT OF SIGNIFICANCE

Surfaces of implantable biomaterials are the site of interaction with a host tissue. Accordingly, modifications in the composition of the surface will determine cellular response towards the material which is crucial for the success of innovations and control of tissue regeneration. We employed a macromer approach which is most flexible for the design of biomaterials with a broad spectrum of physicochemical characteristics. For ideal analytical accessibility of the material platform, we cross-copolymerized films on solid supports. Films allowed for the covalent immobilization of fluorescent labels, peptides and enzymes and thorough analytical characterization revealed that macromer hydrophilicity is the most relevant design parameter for surface analyte presentation in these materials. All analytical results were combined in a model describing PEG linker domain formation and ligand presentation.

摘要

未标注

大分子单体的概念使得通过大分子单体化学或共聚作用可广泛调整生物材料的性能。共聚策略也可用于引入反应位点以便后续进行表面改性。对表面特征的控制能够在植入部位和植入物方面调整细胞反应。我们设计了源自大分子单体的聚合物薄膜,其作为不可植入的分析底物,用于研究骨组织工程中同等组成支架的表面性能。为此,将一个包含九种不同可生物降解的三臂大分子单体的工具箱与聚乙二醇 - 甲基丙烯酸酯(PEG - MA)热交联共聚成薄膜。随后用琥珀酸酐和N - 羟基琥珀酰亚胺对PEG - 羟基进行活化,从而实现共价表面改性。我们对固定低分子量(氨基功能化荧光染料Fcad和RGD肽)和高分子量(碱性磷酸酶,ALP)分析物的能力进行了量化。Fcad接枝水平受大分子单体化学、PEG - MA的含量和分子量控制,也受用于薄膜合成的溶剂控制。与低溶胀薄膜相比,高溶胀薄膜每表面积的Fcad摩尔量高出25倍,但当使用大量ALP(约2:1)时差异变小。同样,在通过细胞黏附研究调查的RGD肽功能化薄膜上观察到的差异较小。通过原子力显微镜(AFM)可视化表面上PEG衍生物的呈现,这揭示了影响荧光染料固定的组成依赖性区域形成。通过静态水接触角研究表面润湿性特征。我们得出结论,大分子单体乙氧基化和乳酸含量决定了薄膜溶胀、PEG区域形成以及最终表面修饰的效率。

意义声明

可植入生物材料的表面是与宿主组织相互作用的部位。因此,表面组成的改变将决定细胞对材料的反应,这对于创新的成功和组织再生的控制至关重要。我们采用了一种大分子单体方法,这种方法在设计具有广泛物理化学特性的生物材料方面最为灵活。为了使材料平台具有理想的分析可及性,我们在固体支持物上对薄膜进行交联共聚。薄膜允许荧光标记、肽和酶的共价固定,全面的分析表征表明,大分子单体亲水性是这些材料中表面分析物呈现最相关的设计参数。所有分析结果都整合到一个描述PEG连接域形成和配体呈现的模型中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验