Suppr超能文献

比较三维水凝胶中单细胞与微球包埋间充质干细胞在软骨再生中的应用。

Comparing Single Cell Versus Pellet Encapsulation of Mesenchymal Stem Cells in Three-Dimensional Hydrogels for Cartilage Regeneration.

机构信息

Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, California.

Department of Biology, School of Humanities and Sciences, Stanford University, Stanford, California.

出版信息

Tissue Eng Part A. 2019 Oct;25(19-20):1404-1412. doi: 10.1089/ten.TEA.2018.0289. Epub 2019 May 2.

Abstract

While the gold standard for inducing mesenchymal stem cell (MSC) chondrogenesis utilizes pellet culture, most tissue engineering strategies for cartilage regeneration encapsulate MSCs as single cells, partially due to the technical challenge to homogeneously encapsulate cell pellets in three-dimensional (3D) hydrogels. It remains unclear whether encapsulating MSCs as single cell suspension or cell aggregates in 3D hydrogels would enhance MSC-based cartilage formation. In this study, we determined that the optimal size of MSC micropellets (μPellets) that can be homogeneously encapsulated in hydrogels with high cell viability is 100 cells/pellet. Using optimized μPellet size, MSCs were encapsulated either as single cell suspension or μPellets in four soft hydrogel formulations with stiffness ranging 3-6 kPa. Regardless of hydrogel formulations, single cell encapsulation resulted in more neocartilage deposition with improved mechanical functions over μPellet encapsulation. For single cell encapsulation, polyethylene glycol (PEG) hydrogels containing chondroitin sulfate led to the most cartilage matrix deposition, with compressive modulus reaching 211 kPa after only 21 days, a range approaching the stiffness of native cartilage. The findings from this study offer valuable insights on guiding optimal method design for MSCs and hydrogel-based cartilage regeneration. The optimized μPellet encapsulation method may be broadly applicable to encapsulate other stem cell types or cancer cells as aggregates in hydrogels. Impact Statement While the gold standard for inducing mesenchymal stem cell (MSC) chondrogenesis utilizes pellet culture, it remains unclear whether encapsulating MSCs as cell pellets in three-dimensional hydrogels would enhance MSC-based cartilage formation. In this study, we determined the optimal size of MSC micropellet (μPellet) that can be homogeneously encapsulated in hydrogels with high cell viability. Unexpectedly, single cell encapsulation resulted in more robust new cartilage formation than μPellet encapsulation. Furthermore, tuning hydrogel formulation led to rapid cartilage regeneration with stiffness approaching that of native cartilage. The findings from this study would facilitate clinical translation of MSCs and hydrogel-based therapies for cartilage regeneration with optimized parameters.

摘要

虽然诱导间充质干细胞(MSC)软骨生成的金标准是使用微球培养,但大多数软骨再生的组织工程策略都将 MSC 包裹为单个细胞,部分原因是在三维(3D)水凝胶中均匀包裹细胞微球存在技术挑战。目前尚不清楚将 MSC 包裹为单细胞悬液或 3D 水凝胶中的细胞聚集体是否会增强基于 MSC 的软骨形成。在这项研究中,我们确定了可以均匀包裹在高细胞活力水凝胶中的 MSC 微球(μPellets)的最佳尺寸是 100 个细胞/微球。使用优化的 μPellet 尺寸,将 MSC 包裹为单细胞悬液或 μPellets 分别封装在 4 种具有 3-6kPa 硬度的软质水凝胶制剂中。无论水凝胶制剂如何,单细胞包封均导致更多的新生软骨沉积,并改善了机械功能,优于 μPellet 包封。对于单细胞包封,含有硫酸软骨素的聚乙二醇(PEG)水凝胶导致软骨基质沉积最多,仅 21 天后压缩模量达到 211kPa,接近天然软骨的刚度。这项研究的结果为指导 MSC 和基于水凝胶的软骨再生的最佳方法设计提供了有价值的见解。优化的 μPellet 包封方法可能广泛适用于将其他干细胞类型或癌细胞包裹为水凝胶中的聚集体。

相似文献

1
Comparing Single Cell Versus Pellet Encapsulation of Mesenchymal Stem Cells in Three-Dimensional Hydrogels for Cartilage Regeneration.
Tissue Eng Part A. 2019 Oct;25(19-20):1404-1412. doi: 10.1089/ten.TEA.2018.0289. Epub 2019 May 2.
3
Gelatin-Based Microribbon Hydrogels Accelerate Cartilage Formation by Mesenchymal Stem Cells in Three Dimensions.
Tissue Eng Part A. 2018 Nov;24(21-22):1631-1640. doi: 10.1089/ten.TEA.2018.0011.
4
The Effects of Inhibition on Mesenchymal Stem Cell Chondrogenesis Are Culture Model Dependent.
Tissue Eng Part A. 2020 Feb;26(3-4):130-139. doi: 10.1089/ten.TEA.2019.0068. Epub 2019 Sep 20.
5
The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.
Acta Biomater. 2017 Oct 1;61:41-53. doi: 10.1016/j.actbio.2017.08.005. Epub 2017 Aug 4.
7
Gradient Hydrogels for Optimizing Niche Cues to Enhance Cell-Based Cartilage Regeneration.
Tissue Eng Part A. 2021 Jul;27(13-14):929-939. doi: 10.1089/ten.TEA.2020.0158. Epub 2020 Oct 19.
8
Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis.
Tissue Eng Part A. 2009 Feb;15(2):243-54. doi: 10.1089/ten.tea.2008.0067.
9
Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells.
Acta Biomater. 2018 Sep 1;77:48-62. doi: 10.1016/j.actbio.2018.07.015. Epub 2018 Jul 10.
10
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.

引用本文的文献

3
MegaPro, a clinically translatable nanoparticle for tracking of stem cell implants in pig cartilage defects.
Theranostics. 2023 Apr 29;13(8):2710-2720. doi: 10.7150/thno.82620. eCollection 2023.
4
Chondrogenic Potential of Human Dental Pulp Stem Cells Cultured as Microtissues.
Stem Cells Int. 2021 Sep 7;2021:7843798. doi: 10.1155/2021/7843798. eCollection 2021.
5
Collagen- and hyaluronic acid-based hydrogels and their biomedical applications.
Mater Sci Eng R Rep. 2021 Oct;146. doi: 10.1016/j.mser.2021.100641. Epub 2021 Jul 30.
6
Current Models for Development of Disease-Modifying Osteoarthritis Drugs.
Tissue Eng Part C Methods. 2021 Feb;27(2):124-138. doi: 10.1089/ten.TEC.2020.0309. Epub 2021 Feb 4.
7
Tissue mimetic hyaluronan bioink containing collagen fibers with controlled orientation modulating cell migration and alignment.
Mater Today Bio. 2020 Jun 1;7:100058. doi: 10.1016/j.mtbio.2020.100058. eCollection 2020 Jun.

本文引用的文献

1
Enhanced Cartilaginous Tissue Formation with a Cell Aggregate-Fibrin-Polymer Scaffold Complex.
Polymers (Basel). 2017 Aug 8;9(8):348. doi: 10.3390/polym9080348.
4
Interaction-tailored cell aggregates in alginate hydrogels for enhanced chondrogenic differentiation.
J Biomed Mater Res A. 2017 Jan;105(1):42-50. doi: 10.1002/jbm.a.35865. Epub 2016 Aug 23.
5
A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization.
Adv Mater. 2009 Dec 28;21(48):5005-5010. doi: 10.1002/adma.200901808. Epub 2009 Oct 7.
6
Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages.
Ann Biomed Eng. 2015 Mar;43(3):543-54. doi: 10.1007/s10439-014-1161-y. Epub 2014 Oct 21.
8
Micro-aggregates do not influence bone marrow stromal cell chondrogenesis.
J Tissue Eng Regen Med. 2016 Dec;10(12):1021-1032. doi: 10.1002/term.1887. Epub 2014 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验