Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA.
Microvasc Res. 2013 May;87:83-91. doi: 10.1016/j.mvr.2013.02.001. Epub 2013 Feb 19.
The existence of a hydrodynamically relevant endothelial glycocalyx has been established in capillaries, venules, and arterioles in vivo. The glycocalyx is thought to consist primarily of membrane-bound proteoglycans with glycosaminoglycan side-chains, membrane-bound glypicans, and adsorbed plasma proteins. The proteoglycans found on the luminal surface of endothelial cells are syndecans-1, -2, and -4, and glypican-1. The extent to which any of these proteins might serve to anchor the glycocalyx to the endothelium has not yet been determined. To test whether syndecan-1, in particular, is an essential anchoring protein, we performed experiments to determine the hydrodynamically relevant glycocalyx thickness in syndecan-1 deficient (Sdc1(-/-)) mice. Micro-particle image velocimetry data were collected using a previously described method. Microviscometric analysis of these data consistently revealed the existence of a hydrodynamically relevant endothelial glycocalyx in Sdc1(-/-) mice in vivo. The mean glycocalyx thickness found in Sdc1(-/-) mice was 0.45±0.10 μm (N=15), as compared with 0.54±0.12 μm (N=11) in wild-type (WT) mice (p=0.03). The slightly thinner glycocalyx observed in Sdc1(-/-) mice relative to WT mice may be due to the absence of syndecan-1. These findings show that healthy Sdc1(-/-) mice are able to synthesize and maintain a hydrodynamically relevant glycocalyx, which indicates that syndecan-1 is not an essential anchoring protein for the glycocalyx in Sdc1(-/-) mice. This may also be the case for WT mice; however, Sdc1(-/-) mice might adapt to the lack of syndecan-1 by increasing the expression of other proteoglycans. In any case, syndecan-1 does not appear to be a prerequisite for the existence of an endothelial glycocalyx.
在体内的毛细血管、小静脉和小动脉中已经发现了具有流体动力学相关性的内皮糖萼的存在。糖萼主要由膜结合的糖胺聚糖侧链、膜结合的糖蛋白聚糖和吸附的血浆蛋白组成。在内皮细胞的腔表面发现的糖蛋白包括 syndecan-1、-2 和 -4 以及 glypican-1。这些蛋白质中的任何一种是否可能将糖萼锚定在内皮上尚未确定。为了测试 syndecan-1 是否是一种必需的锚定蛋白,我们进行了实验以确定 syndecan-1 缺陷(Sdc1(-/-))小鼠中的流体动力学相关糖萼厚度。使用先前描述的方法收集微粒子图像 velocimetry 数据。对这些数据的微粘度分析一致表明,在体内 Sdc1(-/-) 小鼠中存在具有流体动力学相关性的内皮糖萼。在 Sdc1(-/-) 小鼠中发现的平均糖萼厚度为 0.45±0.10 μm(N=15),而在野生型(WT)小鼠中为 0.54±0.12 μm(N=11)(p=0.03)。与 WT 小鼠相比,Sdc1(-/-) 小鼠中观察到的糖萼稍薄可能是由于 syndecan-1 的缺失。这些发现表明,健康的 Sdc1(-/-) 小鼠能够合成和维持具有流体动力学相关性的糖萼,这表明 syndecan-1 不是 Sdc1(-/-) 小鼠中糖萼的必需锚定蛋白。对于 WT 小鼠也可能是这样;然而,Sdc1(-/-) 小鼠可能通过增加其他糖蛋白的表达来适应 syndecan-1 的缺乏。在任何情况下,syndecan-1 似乎都不是内皮糖萼存在的先决条件。