文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

EBSeq:RNA-seq 实验中用于推理的经验贝叶斯层次模型。

EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments.

机构信息

Department of Statistics, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Bioinformatics. 2013 Apr 15;29(8):1035-43. doi: 10.1093/bioinformatics/btt087. Epub 2013 Feb 21.


DOI:10.1093/bioinformatics/btt087
PMID:23428641
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3624807/
Abstract

MOTIVATION: Messenger RNA expression is important in normal development and differentiation, as well as in manifestation of disease. RNA-seq experiments allow for the identification of differentially expressed (DE) genes and their corresponding isoforms on a genome-wide scale. However, statistical methods are required to ensure that accurate identifications are made. A number of methods exist for identifying DE genes, but far fewer are available for identifying DE isoforms. When isoform DE is of interest, investigators often apply gene-level (count-based) methods directly to estimates of isoform counts. Doing so is not recommended. In short, estimating isoform expression is relatively straightforward for some groups of isoforms, but more challenging for others. This results in estimation uncertainty that varies across isoform groups. Count-based methods were not designed to accommodate this varying uncertainty, and consequently, application of them for isoform inference results in reduced power for some classes of isoforms and increased false discoveries for others. RESULTS: Taking advantage of the merits of empirical Bayesian methods, we have developed EBSeq for identifying DE isoforms in an RNA-seq experiment comparing two or more biological conditions. Results demonstrate substantially improved power and performance of EBSeq for identifying DE isoforms. EBSeq also proves to be a robust approach for identifying DE genes. AVAILABILITY AND IMPLEMENTATION: An R package containing examples and sample datasets is available at http://www.biostat.wisc.edu/kendzior/EBSEQ/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:信使 RNA 表达在正常发育和分化以及疾病表现中都很重要。RNA-seq 实验允许在全基因组范围内鉴定差异表达(DE)基因及其相应的异构体。然而,需要统计方法来确保做出准确的鉴定。有许多方法可用于鉴定 DE 基因,但可用于鉴定 DE 异构体的方法却少得多。当异构体 DE 是研究重点时,研究人员通常直接将基于计数的基因水平方法应用于异构体计数的估计值。不建议这样做。简而言之,对于某些组的异构体,估计异构体表达相对简单,但对于其他异构体则更具挑战性。这导致异构体组之间的估计不确定性不同。基于计数的方法并非专为适应这种变化的不确定性而设计,因此,将其应用于异构体推断会导致某些类别的异构体的功效降低,而其他异构体的假发现增加。

结果:利用经验贝叶斯方法的优点,我们开发了 EBSeq 来鉴定两个或多个生物条件比较的 RNA-seq 实验中的 DE 异构体。结果表明,EBSeq 在鉴定 DE 异构体方面具有显著提高的功效和性能。EBSeq 也被证明是一种用于鉴定 DE 基因的稳健方法。

可用性和实现:一个包含示例和样本数据集的 R 包可在 http://www.biostat.wisc.edu/kendzior/EBSEQ/ 获得。

补充信息:补充数据可在 Bioinformatics 在线获得。

相似文献

[1]
EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments.

Bioinformatics. 2013-2-21

[2]
EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.

Bioinformatics. 2015-8-15

[3]
DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates.

Bioinformatics. 2017-10-1

[4]
TIGAR: transcript isoform abundance estimation method with gapped alignment of RNA-Seq data by variational Bayesian inference.

Bioinformatics. 2013-7-2

[5]
Efficient RNA isoform identification and quantification from RNA-Seq data with network flows.

Bioinformatics. 2014-9-1

[6]
Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs.

Bioinformatics. 2013-7-11

[7]
BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data.

BMC Bioinformatics. 2014-9-10

[8]
Identification and visualization of differential isoform expression in RNA-seq time series.

Bioinformatics. 2018-2-1

[9]
NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data.

BMC Bioinformatics. 2013-8-27

[10]
SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples.

Nucleic Acids Res. 2014-8

引用本文的文献

[1]
A unified network systems approach uncovers a core novel program underlying T follicular helper cell differentiation.

bioRxiv. 2025-8-24

[2]
Inactivation of β-1,3-glucan synthase-like 5 confers broad-spectrum resistance to Plasmodiophora brassicae pathotypes in cruciferous plants.

Nat Genet. 2025-9-1

[3]
AI-Enhanced Fluorescein Angiography Detection of Diabetes-Induced Silent Retinal Capillary Dropout and RNA-Seq Identification of Pre-Symptomatic Biomarkers.

Biomedicines. 2025-8-7

[4]
AI-Enhanced Transcriptomic Discovery of Druggable Targets and Repurposed Therapies for Huntington's Disease.

Brain Sci. 2025-8-14

[5]
Origin and evolutionary trajectories of brown algal sex chromosomes.

Nat Ecol Evol. 2025-8-25

[6]
Ginsenoside 20(S)-Rg3 upregulates SQLE to reprogram cholesterol metabolism of ovarian cancer cells.

iScience. 2025-7-1

[7]
Age-related declines in mitochondrial Prdx6 contribute to dysregulated muscle bioenergetics.

Redox Biol. 2025-8-5

[8]
HNRNPH1-mediated splicing events regulate transcript variant composition and the organization of the 5'UTR.

bioRxiv. 2025-7-29

[9]
Selecting differential splicing methods: Practical considerations for short-read RNA sequencing.

F1000Res. 2025-5-30

[10]
Comparative Transcriptomic Profiling in Patients Affected by Duchenne and Becker Muscular Dystrophies: A Focus on ECM Genes Dysregulation.

Int J Mol Sci. 2025-7-9

本文引用的文献

[1]
Differential analysis of gene regulation at transcript resolution with RNA-seq.

Nat Biotechnol. 2012-12-9

[2]
Detecting differential usage of exons from RNA-seq data.

Genome Res. 2012-6-21

[3]
Identifying differentially expressed transcripts from RNA-seq data with biological variation.

Bioinformatics. 2012-5-3

[4]
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.

Nat Protoc. 2012-3-1

[5]
IQSeq: integrated isoform quantification analysis based on next-generation sequencing.

PLoS One. 2012-1-6

[6]
Proteomic and phosphoproteomic comparison of human ES and iPS cells.

Nat Methods. 2011-9-11

[7]
The head-regeneration transcriptome of the planarian Schmidtea mediterranea.

Genome Biol. 2011-8-16

[8]
FDM: a graph-based statistical method to detect differential transcription using RNA-seq data.

Bioinformatics. 2011-8-8

[9]
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.

BMC Bioinformatics. 2011-8-4

[10]
A powerful and flexible approach to the analysis of RNA sequence count data.

Bioinformatics. 2011-8-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索