文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.

作者信息

Leng Ning, Li Yuan, McIntosh Brian E, Nguyen Bao Kim, Duffin Bret, Tian Shulan, Thomson James A, Dewey Colin N, Stewart Ron, Kendziorski Christina

机构信息

Department of Statistics, University of Wisconsin, Madison, WI, USA, Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.

Department of Statistics, University of Wisconsin, Madison, WI, USA.

出版信息

Bioinformatics. 2015 Aug 15;31(16):2614-22. doi: 10.1093/bioinformatics/btv193. Epub 2015 Apr 5.


DOI:10.1093/bioinformatics/btv193
PMID:25847007
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4528625/
Abstract

MOTIVATION: With improvements in next-generation sequencing technologies and reductions in price, ordered RNA-seq experiments are becoming common. Of primary interest in these experiments is identifying genes that are changing over time or space, for example, and then characterizing the specific expression changes. A number of robust statistical methods are available to identify genes showing differential expression among multiple conditions, but most assume conditions are exchangeable and thereby sacrifice power and precision when applied to ordered data. RESULTS: We propose an empirical Bayes mixture modeling approach called EBSeq-HMM. In EBSeq-HMM, an auto-regressive hidden Markov model is implemented to accommodate dependence in gene expression across ordered conditions. As demonstrated in simulation and case studies, the output proves useful in identifying differentially expressed genes and in specifying gene-specific expression paths. EBSeq-HMM may also be used for inference regarding isoform expression. AVAILABILITY AND IMPLEMENTATION: An R package containing examples and sample datasets is available at Bioconductor. CONTACT: kendzior@biostat.wisc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/d1815c91bf80/btv193f5p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/68708a7df287/btv193f1p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/1b798977314e/btv193f2p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/7b7ade21b1fa/btv193f3p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/1cab0d48284a/btv193f4p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/d1815c91bf80/btv193f5p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/68708a7df287/btv193f1p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/1b798977314e/btv193f2p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/7b7ade21b1fa/btv193f3p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/1cab0d48284a/btv193f4p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/4528625/d1815c91bf80/btv193f5p.jpg

相似文献

[1]
EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.

Bioinformatics. 2015-8-15

[2]
EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments.

Bioinformatics. 2013-2-21

[3]
Polyester: simulating RNA-seq datasets with differential transcript expression.

Bioinformatics. 2015-9-1

[4]
Integrative analysis of multiple genomic variables using a hierarchical Bayesian model.

Bioinformatics. 2017-10-15

[5]
Normalization and noise reduction for single cell RNA-seq experiments.

Bioinformatics. 2015-7-1

[6]
Identification and visualization of differential isoform expression in RNA-seq time series.

Bioinformatics. 2018-2-1

[7]
Detecting Multivariate Gene Interactions in RNA-Seq Data Using Optimal Bayesian Classification.

IEEE/ACM Trans Comput Biol Bioinform. 2015-10-1

[8]
ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

Bioinformatics. 2017-3-1

[9]
SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.

BMC Bioinformatics. 2016-2-4

[10]
SparseIso: a novel Bayesian approach to identify alternatively spliced isoforms from RNA-seq data.

Bioinformatics. 2018-1-1

引用本文的文献

[1]
Model-to-crop conserved NUE Regulons enhance machine learning predictions of nitrogen use efficiency.

Plant Cell. 2025-5-9

[2]
Comprehensive time-course gene expression evaluation of high-risk beef cattle to establish immunological characteristics associated with undifferentiated bovine respiratory disease.

Front Immunol. 2024

[3]
Transcriptional repression of under water-deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance.

Plant Direct. 2024-5-24

[4]
Unraveling the dynamic transcriptomic changes during the dimorphic transition of through time-course analysis.

Front Microbiol. 2024-4-24

[5]
The ctenophore Mnemiopsis leidyi deploys a rapid injury response dating back to the last common animal ancestor.

Commun Biol. 2024-2-19

[6]
Inhibition of PI3K/AKT signaling pathway prevents blood-induced heterotopic ossification of the injured tendon.

J Orthop Translat. 2024-2-2

[7]
Integrative analysis of metabolome and transcriptome profiles to highlight aroma determinants in Aglianico and Falanghina grape berries.

BMC Plant Biol. 2023-5-6

[8]
Robust classification of wound healing stages in both mice and humans for acute and burn wounds based on transcriptomic data.

BMC Bioinformatics. 2023-4-25

[9]
Transcriptomic analysis reveals the immune response of human microglia to a soy protein and collagen hybrid bioscaffold.

Heliyon. 2023-2-1

[10]
FGF8-FGFR1 signaling regulates human GnRH neuron differentiation in a time- and dose-dependent manner.

Dis Model Mech. 2022-8-1

本文引用的文献

[1]
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

Genome Biol. 2014

[2]
Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series.

Bioinformatics. 2014-9-15

[3]
voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.

Genome Biol. 2014-2-3

[4]
rSeqDiff: detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test.

PLoS One. 2013-11-18

[5]
EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments.

Bioinformatics. 2013-2-21

[6]
Differential analysis of gene regulation at transcript resolution with RNA-seq.

Nat Biotechnol. 2012-12-9

[7]
Identifying differentially expressed transcripts from RNA-seq data with biological variation.

Bioinformatics. 2012-5-3

[8]
Fast computation and applications of genome mappability.

PLoS One. 2012-1-19

[9]
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.

BMC Bioinformatics. 2011-8-4

[10]
The uniqueome: a mappability resource for short-tag sequencing.

Bioinformatics. 2010-11-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索