Suppr超能文献

利用微生物燃料电池输出指标和非线性建模技术进行智能生物传感。

Using microbial fuel cell output metrics and nonlinear modeling techniques for smart biosensing.

机构信息

Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, 3700 O'Hara St., Pittsburgh, PA 15261, USA.

出版信息

Sci Total Environ. 2013 Apr 1;449:223-8. doi: 10.1016/j.scitotenv.2013.01.004. Epub 2013 Feb 19.

Abstract

Microbial fuel cells (MFCs) are promising tools for water quality monitoring but the response peaks have not been characterized and the data processing methods require improvement. In this study MFC-based biosensing was integrated with two nonlinear programming methods, artificial neural networks (ANN) and time series analysis (TSA). During laboratory testing, the MFCs generated well-organized normally-distributed peaks when the influent chemical oxygen demand (COD) was 150 mg/L or less, and multi-peak signals when the influent COD was 200 mg/L. The area under the response peak correlated well with the influent COD concentration. During field testing, we observed normally-distributed and multi-peak profiles at low COD concentrations. The ANN predicted the COD concentration without error with just one layer of hidden neurons, and the TSA model predicted the temporal trends present in properly functioning MFCs and in a device that was gradually failing. This report is the first to integrate ANN and TSA with MFC-based biosensing.

摘要

微生物燃料电池(MFC)是水质监测的有前途的工具,但尚未对其响应峰进行特征描述,并且数据处理方法需要改进。在这项研究中,基于 MFC 的生物传感与两种非线性规划方法(人工神经网络(ANN)和时间序列分析(TSA))相结合。在实验室测试中,当进水化学需氧量(COD)为 150mg/L 或更低时,MFC 产生组织良好的正态分布峰,而当进水 COD 为 200mg/L 时则产生多峰信号。响应峰的面积与进水 COD 浓度密切相关。在现场测试中,我们在低 COD 浓度下观察到正态分布和多峰谱。ANN 仅使用一层隐藏神经元即可准确预测 COD 浓度,而 TSA 模型则可以预测正常运行的 MFC 中的时间趋势以及逐渐失效的设备中的时间趋势。本报告首次将 ANN 和 TSA 与基于 MFC 的生物传感相结合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验