Tsompanas Michail-Antisthenis, You Jiseon, Philamore Hemma, Rossiter Jonathan, Ieropoulos Ioannis
Bristol BioEnergy Centre, Bristol Robotics Laboratory, Frenchay Campus, University of the West of England, Bristol, United Kingdom.
SoftLab, Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom.
Front Robot AI. 2021 Mar 4;8:633414. doi: 10.3389/frobt.2021.633414. eCollection 2021.
The development of biodegradable soft robotics requires an appropriate eco-friendly source of energy. The use of Microbial Fuel Cells (MFCs) is suggested as they can be designed completely from soft materials with little or no negative effects to the environment. Nonetheless, their responsiveness and functionality is not strictly defined as in other conventional technologies, i.e. lithium batteries. Consequently, the use of artificial intelligence methods in their control techniques is highly recommended. The use of neural networks, namely a nonlinear autoregressive network with exogenous inputs was employed to predict the electrical output of an MFC, given its previous outputs and feeding volumes. Thus, predicting MFC outputs as a time series, enables accurate determination of feeding intervals and quantities required for sustenance that can be incorporated in the behavioural repertoire of a soft robot.
可生物降解软机器人的发展需要一种合适的环保能源。有人建议使用微生物燃料电池(MFC),因为它们可以完全由软材料设计而成,对环境几乎没有负面影响。然而,与其他传统技术(即锂电池)不同,它们的响应性和功能性并没有严格定义。因此,强烈建议在其控制技术中使用人工智能方法。利用神经网络,即具有外部输入的非线性自回归网络,根据微生物燃料电池的先前输出和进料量来预测其电输出。因此,将微生物燃料电池的输出作为时间序列进行预测,能够准确确定维持所需的进料间隔和数量,这些信息可以纳入软机器人的行为指令库中。