Suppr超能文献

腹部扩散加权 MRI 中运动稳健的参数估计:通过同步图像配准和模型估计。

Motion-robust parameter estimation in abdominal diffusion-weighted MRI by simultaneous image registration and model estimation.

机构信息

Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, United States.

Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, United States.

出版信息

Med Image Anal. 2017 Jul;39:124-132. doi: 10.1016/j.media.2017.04.006. Epub 2017 May 3.

Abstract

Quantitative body DW-MRI can detect abdominal abnormalities as well as monitor response-to-therapy for applications including cancer and inflammatory bowel disease with increased accuracy. Parameter estimates are obtained by fitting a forward model of DW-MRI signal decay to the observed data acquired with several b-values. The DW-MRI signal decay models typically used do not account for respiratory, cardiac and peristaltic motion, however, which may deteriorate the accuracy and robustness of parameter estimates. In this work, we introduce a new model of DW-MRI signal decay that explicitly accounts for motion. Specifically, we estimated motion-compensated model parameters by simultaneously solving image registration and model estimation (SIR-ME) problems utilizing the interdependence of acquired volumes along the diffusion-weighting dimension. To accomplish this, we applied the SIR-ME model to the in-vivo DW-MRI data sets of 26 Crohn's disease (CD) patients and achieved improved precision of the estimated parameters by reducing the coefficient of variation by 8%, 24% and 8% for slow diffusion (D), fast diffusion (D*) and fast diffusion fraction (f) parameters respectively, compared to parameters estimated with independent registration in normal-appearing bowel regions. Moreover, the parameters estimated with the SIR-ME model reduced the error rate in classifying normal and abnormal bowel loops to 12% for D and 10% for f parameter with a reduction in error rate by 13% and 11% for D and f parameters, respectively, compared to the error rate in classifying parameter estimates obtained with independent registration. The experiments in DW-MRI of liver in 20 subjects also showed that the SIR-ME model improved the precision of parameter estimation by reducing the coefficient of variation to 7% for D, 23% for D*, and 8% for the f parameter. Using the SIR-ME model, the coefficient of variation was reduced by 4%, 14% and 6% for D, D* and f parameters, respectively, compared to parameters estimated with independent registration. These results demonstrate that the proposed SIR-ME model improves the accuracy and robustness of quantitative body DW-MRI in characterizing tissue microstructure.

摘要

定量体部 DW-MRI 可以检测腹部异常,并通过增加准确性来监测癌症和炎症性肠病等应用的治疗反应。通过将 DW-MRI 信号衰减的前向模型拟合到使用多个 b 值采集的观测数据,可以获得参数估计值。然而,通常使用的 DW-MRI 信号衰减模型没有考虑呼吸、心脏和蠕动运动,这可能会降低参数估计的准确性和稳健性。在这项工作中,我们引入了一种新的 DW-MRI 信号衰减模型,该模型明确考虑了运动。具体来说,我们通过利用沿扩散加权维度获取的体积之间的相关性,同时解决图像配准和模型估计(SIR-ME)问题来估计运动补偿模型参数。为了实现这一点,我们将 SIR-ME 模型应用于 26 例克罗恩病(CD)患者的体内 DW-MRI 数据集,并通过将变异系数降低 8%、24%和 8%,分别用于慢扩散(D)、快扩散(D*)和快扩散分数(f)参数,与在正常表现肠区进行独立配准估计的参数相比,提高了参数的估计精度。此外,与独立配准的参数分类相比,使用 SIR-ME 模型估计的参数将正常和异常肠环的分类错误率降低到 12%(D )和 10%(f)参数,D 和 f 参数的错误率分别降低了 13%和 11%。20 名受试者的肝脏 DW-MRI 实验也表明,SIR-ME 模型通过将变异系数降低至 7%(D)、23%(D*)和 8%(f),提高了参数估计的精度。与独立配准的参数相比,使用 SIR-ME 模型,D、D*和 f 参数的变异系数分别降低了 4%、14%和 6%。这些结果表明,所提出的 SIR-ME 模型提高了定量体部 DW-MRI 对组织微观结构进行特征描述的准确性和稳健性。

相似文献

引用本文的文献

本文引用的文献

2
PCA-based groupwise image registration for quantitative MRI.基于主成分分析的定量 MRI 组间图像配准。
Med Image Anal. 2016 Apr;29:65-78. doi: 10.1016/j.media.2015.12.004. Epub 2015 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验