Suppr超能文献

实验性自身免疫性脑脊髓炎中 Foxp3+调节性 T 细胞的多样化和衰老。

Diversification and senescence of Foxp3+ regulatory T cells during experimental autoimmune encephalomyelitis.

机构信息

Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Eur J Immunol. 2013 May;43(5):1195-207. doi: 10.1002/eji.201242881. Epub 2013 Apr 9.

Abstract

The fate of Foxp3(+) regulatory T (Treg) cells responding during autoimmunity is not well defined. We observed a marked elevation in KLRG1(+) (where KLRG1 stands for killer cell lectin-like receptor G1) CNS-infiltrating Treg cells in experimental autoimmune encephalomyelitis (EAE), and assessed their origin and properties. KLRG1(+) Treg cells showed increased activation marker expression, Foxp3 and CD25 levels, and more rapid cell cycling than KLRG1(-) cells. KLRG1(-) Treg cells converted into KLRG1(+) cells and this was increased in autoimmune inflammation. Conversion was unidirectional; KLRG1(+) Treg cells did not revert to a KLRG1(-) state. KLRG1(+) but notKLRG1(-) Treg cells survived poorly, indicative of terminal differentiation. This was associated with diminished BCL2 and increased apoptosis of isolated cells. KLRG1 was also upregulated on iTreg cells after transfer and EAE induction or on iTreg cells developing spontaneously during EAE. KLRG1(+) Treg cells produced more IL-10 and had altered effector cytokine production compared with their KLRG1(-) counterparts. Despite their differences, KLRG1(+) and KLRG1(-) Treg cells proved similarly potent in suppressing EAE. KLRG1(+) and KLRG1(-) populations were phenotypically heterogeneous, with the extent and pattern of activation marker expression dependent both on cellular location and inflammation. Our results support an extensive diversification of Treg cells during EAE, and associate KLRG1 with altered Treg-cell function and senescence.

摘要

Foxp3(+) 调节性 T (Treg) 细胞在自身免疫中反应的命运尚不清楚。我们在实验性自身免疫性脑脊髓炎 (EAE) 中观察到中枢神经系统浸润的 Treg 细胞中 KLRG1(+)(其中 KLRG1 代表杀伤细胞凝集素样受体 G1)显著升高,并评估了它们的起源和特性。KLRG1(+) Treg 细胞表现出更高的激活标志物表达、Foxp3 和 CD25 水平,以及比 KLRG1(-) 细胞更快的细胞周期。KLRG1(-) Treg 细胞转化为 KLRG1(+) 细胞,并且在自身免疫性炎症中增加。转化是单向的;KLRG1(+) Treg 细胞不会恢复到 KLRG1(-) 状态。KLRG1(+) 但不是 KLRG1(-) Treg 细胞存活率低,表明终末分化。这与分离细胞中 BCL2 减少和凋亡增加有关。KLRG1 也在上皮 Treg 细胞转移和 EAE 诱导后或上皮 Treg 细胞在 EAE 期间自发发育后上调。与 KLRG1(-) 细胞相比,KLRG1(+) Treg 细胞产生更多的 IL-10 并改变效应细胞因子的产生。尽管存在差异,但 KLRG1(+) 和 KLRG1(-) Treg 细胞在抑制 EAE 方面同样有效。KLRG1(+) 和 KLRG1(-) 群体在表型上具有异质性,其激活标志物表达的程度和模式既依赖于细胞位置,也依赖于炎症。我们的结果支持 Treg 细胞在 EAE 期间广泛多样化,并将 KLRG1 与改变的 Treg 细胞功能和衰老相关联。

相似文献

1
Diversification and senescence of Foxp3+ regulatory T cells during experimental autoimmune encephalomyelitis.
Eur J Immunol. 2013 May;43(5):1195-207. doi: 10.1002/eji.201242881. Epub 2013 Apr 9.
2
KLRG1 expression identifies short-lived Foxp3 T effector cells with functional plasticity in islets of NOD mice.
Autoimmunity. 2017 Sep;50(6):354-362. doi: 10.1080/08916934.2017.1364368. Epub 2017 Aug 29.
4
Generation of RORγt Antigen-Specific T Regulatory 17 Cells from Foxp3 Precursors in Autoimmunity.
Cell Rep. 2017 Oct 3;21(1):195-207. doi: 10.1016/j.celrep.2017.09.021.
6
KLRG1 impairs regulatory T-cell competitive fitness in the gut.
Immunology. 2017 Sep;152(1):65-73. doi: 10.1111/imm.12749. Epub 2017 Jun 20.
7
Characterization of mouse CD4 T cell subsets defined by expression of KLRG1.
Eur J Immunol. 2007 Dec;37(12):3445-54. doi: 10.1002/eji.200737126.
8
Paralysis of CD4(+)CD25(+) regulatory T cell response in chronic autoimmune encephalomyelitis.
J Neuroimmunol. 2007 Jul;187(1-2):44-54. doi: 10.1016/j.jneuroim.2007.04.004. Epub 2007 May 17.

引用本文的文献

1
KLRG1 identifies regulatory T cells with mitochondrial alterations that accumulate with aging.
Nat Aging. 2025 May;5(5):799-815. doi: 10.1038/s43587-025-00855-9. Epub 2025 Apr 30.
2
The role of KLRG1: a novel biomarker and new therapeutic target.
Cell Commun Signal. 2024 Jun 19;22(1):337. doi: 10.1186/s12964-024-01714-7.
3
The Yin and Yang of Targeting KLRG1 Tregs and Effector Cells.
Front Immunol. 2022 Apr 29;13:894508. doi: 10.3389/fimmu.2022.894508. eCollection 2022.
5
CD4T Cell Subset Profiling in Biliary Atresia Reveals ICOS Regulatory T Cells as a Favorable Prognostic Factor.
Front Pediatr. 2019 Jul 9;7:279. doi: 10.3389/fped.2019.00279. eCollection 2019.
6
MicroRNA-mediated regulation of T helper type 17/regulatory T-cell balance in autoimmune disease.
Immunology. 2018 Dec;155(4):427-434. doi: 10.1111/imm.12994. Epub 2018 Sep 10.
7
LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes.
Sci Immunol. 2017 Mar 31;2(9). doi: 10.1126/sciimmunol.aah4569.
8
Regulatory T cells in multiple sclerosis and myasthenia gravis.
J Neuroinflammation. 2017 Jun 9;14(1):117. doi: 10.1186/s12974-017-0892-8.
10
Lifelong training improves anti-inflammatory environment and maintains the number of regulatory T cells in masters athletes.
Eur J Appl Physiol. 2017 Jun;117(6):1131-1140. doi: 10.1007/s00421-017-3600-6. Epub 2017 Apr 8.

本文引用的文献

1
IL-2 receptor signaling is essential for the development of Klrg1+ terminally differentiated T regulatory cells.
J Immunol. 2012 Aug 15;189(4):1780-91. doi: 10.4049/jimmunol.1103768. Epub 2012 Jul 11.
2
The T cell response to IL-10 alters cellular dynamics and paradoxically promotes central nervous system autoimmunity.
J Immunol. 2012 Jul 15;189(2):669-78. doi: 10.4049/jimmunol.1200607. Epub 2012 Jun 18.
3
Allograft rejection is restrained by short-lived TIM-3+PD-1+Foxp3+ Tregs.
J Clin Invest. 2012 Jul;122(7):2395-404. doi: 10.1172/JCI45138. Epub 2012 Jun 11.
4
The indispensable role of CCR5 for in vivo suppressor function of tumor-derived CD103+ effector/memory regulatory T cells.
J Immunol. 2012 Jul 15;189(2):567-74. doi: 10.4049/jimmunol.1200266. Epub 2012 Jun 4.
5
Phenotypic and functional properties of Helios+ regulatory T cells.
PLoS One. 2012;7(3):e34547. doi: 10.1371/journal.pone.0034547. Epub 2012 Mar 30.
6
Dissociating markers of senescence and protective ability in memory T cells.
PLoS One. 2012;7(3):e32576. doi: 10.1371/journal.pone.0032576. Epub 2012 Mar 2.
7
Nature and nurture in Foxp3(+) regulatory T cell development, stability, and function.
Hum Immunol. 2012 Mar;73(3):232-9. doi: 10.1016/j.humimm.2011.12.012. Epub 2011 Dec 27.
8
Regulatory T cells: mechanisms of differentiation and function.
Annu Rev Immunol. 2012;30:531-64. doi: 10.1146/annurev.immunol.25.022106.141623. Epub 2012 Jan 6.
9
The immunoregulatory role of CD4⁺ FoxP3⁺ CD25⁻ regulatory T cells in lungs of mice infected with Bordetella pertussis.
FEMS Immunol Med Microbiol. 2012 Apr;64(3):413-24. doi: 10.1111/j.1574-695X.2011.00927.x. Epub 2012 Jan 18.
10
Response to self antigen imprints regulatory memory in tissues.
Nature. 2011 Nov 27;480(7378):538-42. doi: 10.1038/nature10664.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验