Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA.
J Biol Chem. 2013 Apr 12;288(15):10672-83. doi: 10.1074/jbc.M113.455105. Epub 2013 Feb 25.
Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition-responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon-concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc deficiency, probably due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3, and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to copper limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc-deficient cells are functionally copper-deficient, although they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester copper in a biounavailable form, perhaps to prevent mismetallation of critical zinc sites.
锌是一种必需的营养物质,因为它在催化和蛋白质稳定中发挥作用,但过量的锌是有害的。我们在藻类莱茵衣藻中区分了四种营养锌状态:有毒、充足、缺乏和有限。与锌充足的细胞相比,锌有限和锌毒性的细胞的生长受到抑制,而锌缺乏在视觉上无症状,但通过编码 ZIP 家族转运蛋白的转录本的积累来区分。为了确定锌缺乏的靶标和锌适应的机制,我们使用 RNA-seq 来探测基因表达对锌营养响应的变化。我们鉴定了编码锌处理成分的基因,包括 ZIP 家族转运蛋白和候选伴侣。此外,我们注意到对另外两个调节途径的影响,即碳浓缩机制(CCM)和营养铜调节子。转录因子 Ccm1 和各种 CAH 基因的靶标在锌缺乏时上调,可能是由于碳酸酐酶活性降低,通过定量蛋白质组学和 Cah1、Cah3 和 Cah4 的免疫印迹分析验证。因此,衣藻在缺锌条件下不能进行光合作用自养生长,但补充 1%CO2 可将生长恢复到野生型水平,表明无法维持 CCM 是缺锌的主要后果。Crr1 调节子对铜限制有反应,并在锌缺乏时被激活,并且 Crr1 是在锌限制条件下生长所必需的。缺锌细胞在功能上铜缺乏,尽管它们将铜积累到正常水平的 50 倍以上。我们认为,缺锌细胞将铜螯合在一种不可利用的形式中,也许是为了防止关键锌位点的错配位。