Suppr超能文献

高分辨率突变分析提示胶质母细胞瘤患者来源的临床前模型的遗传有效性。

High-resolution mutational profiling suggests the genetic validity of glioblastoma patient-derived pre-clinical models.

机构信息

Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America.

出版信息

PLoS One. 2013;8(2):e56185. doi: 10.1371/journal.pone.0056185. Epub 2013 Feb 18.

Abstract

Recent advances in the ability to efficiently characterize tumor genomes is enabling targeted drug development, which requires rigorous biomarker-based patient selection to increase effectiveness. Consequently, representative DNA biomarkers become equally important in pre-clinical studies. However, it is still unclear how well these markers are maintained between the primary tumor and the patient-derived tumor models. Here, we report the comprehensive identification of somatic coding mutations and copy number aberrations in four glioblastoma (GBM) primary tumors and their matched pre-clinical models: serum-free neurospheres, adherent cell cultures, and mouse xenografts. We developed innovative methods to improve the data quality and allow a strict comparison of matched tumor samples. Our analysis identifies known GBM mutations altering PTEN and TP53 genes, and new actionable mutations such as the loss of PIK3R1, and reveals clear patient-to-patient differences. In contrast, for each patient, we do not observe any significant remodeling of the mutational profile between primary to model tumors and the few discrepancies can be attributed to stochastic errors or differences in sample purity. Similarly, we observe ∼96% primary-to-model concordance in copy number calls in the high-cellularity samples. In contrast to previous reports based on gene expression profiles, we do not observe significant differences at the DNA level between in vitro compared to in vivo models. This study suggests, at a remarkable resolution, the genome-wide conservation of a patient's tumor genetics in various pre-clinical models, and therefore supports their use for the development and testing of personalized targeted therapies.

摘要

近年来,人们能够高效地对肿瘤基因组进行特征分析,从而推动了靶向药物的开发,而这需要严格基于生物标志物的患者选择,以提高疗效。因此,代表性的 DNA 生物标志物在临床前研究中同样重要。然而,这些标记物在原发肿瘤和患者来源的肿瘤模型之间的保持程度尚不清楚。在这里,我们报告了对四个胶质母细胞瘤(GBM)原发肿瘤及其匹配的临床前模型(无血清神经球、贴壁细胞培养和小鼠异种移植)中的体细胞编码突变和拷贝数异常的全面鉴定。我们开发了创新的方法来提高数据质量,并允许对匹配的肿瘤样本进行严格比较。我们的分析确定了改变 PTEN 和 TP53 基因的已知 GBM 突变,以及新的可操作突变,如 PIK3R1 的缺失,并揭示了明显的患者间差异。相比之下,对于每个患者,我们没有观察到原发肿瘤与模型肿瘤之间的突变谱发生任何显著变化,而少数差异可以归因于随机误差或样本纯度的差异。同样,我们观察到在高细胞密度样本中,拷贝数调用的一致性约为 96%。与基于基因表达谱的先前报告不同,我们没有观察到体外模型与体内模型之间在 DNA 水平上的显著差异。这项研究以极高的分辨率表明,在各种临床前模型中,患者肿瘤遗传信息在全基因组范围内得到了很好的保存,因此支持它们用于开发和测试个性化靶向治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4401/3575368/e3aefb2a9aea/pone.0056185.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验