LaunchPoint Technologies LLC, Goleta, California, USA.
Artif Organs. 2010 May;34(5):402-11. doi: 10.1111/j.1525-1594.2009.00875.x. Epub 2009 Oct 12.
An important challenge facing the design of turbodynamic ventricular assist devices (VADs) intended for long-term support is the optimization of the flow path geometry to maximize hydraulic performance while minimizing shear-stress-induced hemolysis and thrombosis. For unshrouded centrifugal, mixed-flow and axial-flow blood pumps, the complex flow patterns within the blade tip clearance between the lengthwise upper surface of the rotating impeller blades and the stationary pump housing have a dramatic effect on both the hydrodynamic performance and the blood damage production. Detailed computational fluid dynamics (CFD) analyses were performed in this study to investigate such flow behavior in blade tip clearance region for a centrifugal blood pump representing a scaled-up version of a prototype pediatric VAD. Nominal flow conditions were analyzed at a flow rate of 2.5 L/min and rotor speed of 3000 rpm with three blade tip clearances of 50, 100, and 200 microm. CFD simulations predicted a decrease in the averaged tip leakage flow rate and an increase in pump head and axial thrust with decreasing blade tip clearances from 200 to 50 microm. The predicted hemolysis, however, exhibited a unimodal relationship, having a minimum at 100 microm compared to 50 microm and 200 microm. Experimental data corroborate these predictions. Detailed flow patterns observed in this study revealed interesting fluid dynamic features associated with the blade tip clearances, such as the generation and dissipation of tip leakage vortex and its interaction with the primary flow in the blade-blade passages. Quantitative calculations suggested the existence of an optimal blade tip clearance by which hydraulic efficiency can be maximized and hemolysis minimized.
面临的一个重要挑战turbodynamic 心室辅助装置 (VAD) 的设计旨在为长期支持是优化流道几何形状,以最大限度地提高水力性能,同时最大限度地减少剪切应力诱导的溶血和血栓形成。对于无罩离心式、混流式和轴流式血泵,叶片尖端间隙内的复杂流动模式在旋转叶轮叶片的纵向上表面和固定泵壳之间,对水动力性能和血液损伤产生有显著的影响。在这项研究中进行了详细的计算流体动力学 (CFD) 分析,以研究代表原型儿科 VAD 放大版本的离心血泵中叶片尖端间隙区域的这种流动行为。在流量为 2.5 L/min 和转速为 3000 rpm 的情况下,分析了标称流量条件,叶片尖端间隙分别为 50、100 和 200 微米。CFD 模拟预测,随着叶片尖端间隙从 200 微米减小到 50 微米,平均泄漏流量减小,泵头和轴向推力增大。然而,预测的溶血表现出单峰关系,与 50 微米和 200 微米相比,在 100 微米处具有最小值。实验数据证实了这些预测。本研究中观察到的详细流动模式揭示了与叶片尖端间隙相关的有趣的流体动力学特征,例如泄漏涡的产生和耗散及其与叶片叶片通道中的主流的相互作用。定量计算表明,存在一个最佳的叶片尖端间隙,可以最大限度地提高水力效率,同时最小化溶血。