Suppr超能文献

平面双层中的锥形脂质诱导类似于正曲率诱导的堆积缺陷。

Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature.

机构信息

INSERM, U665, Paris, France.

出版信息

Biophys J. 2013 Feb 5;104(3):585-93. doi: 10.1016/j.bpj.2012.11.3836.

Abstract

In biological membranes, changes in lipid composition or mechanical deformations produce defects in the geometrical arrangement of lipids, thus allowing the adsorption of certain peripheral proteins. Here, we perform molecular dynamics simulations on bilayers containing a cylindrical lipid (PC) and a conical lipid (DOG). Profiles of atomic density and lateral pressure across the bilayer show differences in the acyl chain region due to deeper partitioning of DOG compared to PC. However, such analyses are less informative for the interfacial region where peripheral proteins adsorb. To circumvent this limitation, we develop, to our knowledge, a new method of membrane surface analysis. This method allows the identification of chemical defects, where hydrocarbon chains are accessible to the solvent, and geometrical defects, i.e., voids deeper than the glycerol backbone. The size and number of both types of defects increase with the number of monounsaturated acyl chains in PC and with the introduction of DOG, although the defects do not colocalize with the conical lipid. Interestingly, the size and probability of the defects promoted by DOG resemble those induced by positive curvature, thus explaining why conical lipids and positive curvature can both drive the adsorption of peripheral proteins that use hydrophobic residues as membrane anchors.

摘要

在生物膜中,脂质组成的变化或机械变形会导致脂质的几何排列产生缺陷,从而允许某些外周蛋白的吸附。在这里,我们对含有圆柱形脂质(PC)和锥形脂质(DOG)的双层膜进行了分子动力学模拟。双层膜中原子密度和侧向压力的分布曲线表明,由于 DOG 比 PC 更深地分配,酰基链区域存在差异。然而,对于外周蛋白吸附的界面区域,这种分析不太有用。为了克服这一限制,我们开发了一种新的膜表面分析方法。该方法可以识别化学缺陷,即烃链可接触溶剂的区域,以及几何缺陷,即比甘油骨架深的空隙。这两种类型的缺陷的大小和数量都随着 PC 中单不饱和酰基链的数量和 DOG 的引入而增加,尽管缺陷并不与锥形脂质共定位。有趣的是,DOG 引起的缺陷的大小和概率与正曲率诱导的缺陷相似,这解释了为什么锥形脂质和正曲率都可以驱动使用疏水性残基作为膜锚的外周蛋白的吸附。

相似文献

1
Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature.
Biophys J. 2013 Feb 5;104(3):585-93. doi: 10.1016/j.bpj.2012.11.3836.
2
Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues.
Biophys J. 2013 Feb 5;104(3):575-84. doi: 10.1016/j.bpj.2012.11.3837.
3
PackMem: A Versatile Tool to Compute and Visualize Interfacial Packing Defects in Lipid Bilayers.
Biophys J. 2018 Aug 7;115(3):436-444. doi: 10.1016/j.bpj.2018.06.025. Epub 2018 Jul 5.
4
The importance of membrane defects-lessons from simulations.
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.
5
Methyl-branched lipids promote the membrane adsorption of α-synuclein by enhancing shallow lipid-packing defects.
Phys Chem Chem Phys. 2015 Jun 28;17(24):15589-97. doi: 10.1039/c5cp00244c. Epub 2015 Mar 31.
7
Three-Dimensional Packing Defects in Lipid Membrane as a Function of Membrane Order.
J Chem Theory Comput. 2020 Dec 8;16(12):7800-7816. doi: 10.1021/acs.jctc.0c00609. Epub 2020 Nov 23.
8
Structure and functional properties of diacylglycerols in membranes.
Prog Lipid Res. 1999 Jan;38(1):1-48. doi: 10.1016/s0163-7827(98)00021-6.
10
Membrane Interactions of hIAPP Monomer and Oligomer with Lipid Membranes by Molecular Dynamics Simulations.
ACS Chem Neurosci. 2017 Aug 16;8(8):1789-1800. doi: 10.1021/acschemneuro.7b00160. Epub 2017 Jun 13.

引用本文的文献

2
Septin higher-order structure on yeast membranes in vitro.
Nat Commun. 2025 May 30;16(1):5055. doi: 10.1038/s41467-025-60344-w.
3
The Role of Flexibility in the Bioactivity of Short α-Helical Antimicrobial Peptides.
Antibiotics (Basel). 2025 Apr 22;14(5):422. doi: 10.3390/antibiotics14050422.
4
Pex30-dependent membrane contact sites maintain ER lipid homeostasis.
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202409039. Epub 2025 May 23.
5
Charge distribution and helicity tune the binding of septin's amphipathic helix domain to membranes.
Biophys J. 2025 Apr 15;124(8):1298-1312. doi: 10.1016/j.bpj.2025.03.008. Epub 2025 Apr 2.
7
Lipid packing and local geometry influence septin curvature sensing.
bioRxiv. 2025 Feb 16:2025.02.12.637894. doi: 10.1101/2025.02.12.637894.
8
Boosting Lipofection Efficiency Through Enhanced Membrane Fusion Mechanisms.
Int J Mol Sci. 2024 Dec 18;25(24):13540. doi: 10.3390/ijms252413540.
9
Amphipathic helices sense the inner nuclear membrane environment through lipid packing defects.
bioRxiv. 2024 Dec 20:2024.11.14.623600. doi: 10.1101/2024.11.14.623600.
10
Surface tension-driven sorting of human perilipins on lipid droplets.
J Cell Biol. 2024 Dec 2;223(12). doi: 10.1083/jcb.202403064. Epub 2024 Sep 19.

本文引用的文献

1
P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation.
J Chem Theory Comput. 2008 Jan;4(1):116-22. doi: 10.1021/ct700200b.
2
Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues.
Biophys J. 2013 Feb 5;104(3):575-84. doi: 10.1016/j.bpj.2012.11.3837.
6
Amphipathic-Lipid-Packing-Sensor interactions with lipids assessed by atomistic molecular dynamics.
Biochim Biophys Acta. 2011 Sep;1808(9):2119-27. doi: 10.1016/j.bbamem.2011.05.006. Epub 2011 May 12.
7
Interpretation of fluctuation spectra in lipid bilayer simulations.
Biophys J. 2011 May 4;100(9):2104-11. doi: 10.1016/j.bpj.2011.03.010.
8
Mechanisms of membrane curvature sensing.
Annu Rev Biochem. 2011;80:101-23. doi: 10.1146/annurev-biochem-052809-155121.
9
Mechanism of membrane curvature sensing by amphipathic helix containing proteins.
Biophys J. 2011 Mar 2;100(5):1271-9. doi: 10.1016/j.bpj.2011.01.036.
10
Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids.
Annu Rev Phys Chem. 2011;62:483-506. doi: 10.1146/annurev.physchem.012809.103450.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验