Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
Biophys J. 2013 Feb 5;104(3):622-32. doi: 10.1016/j.bpj.2012.12.011.
Sugar recognition at the membrane is critical in various physiological processes. Many aspects of sugar-membrane interaction are still unknown. We take an integrated approach by combining conventional molecular-dynamics simulations with enhanced sampling methods and analytical models to understand the thermodynamics and kinetics of a di-mannose molecule in a phospholipid bilayer system. We observe that di-mannose has a slight preference to localize at the water-phospholipid interface. Using umbrella sampling, we show the free energy bias for this preferred location to be just -0.42 kcal/mol, which explains the coexistence of attraction and exclusion mechanisms of sugar-membrane interaction. Accurate estimation of absolute entropy change of water molecules with a two-phase model indicates that the small energy bias is the result of a favorable entropy change of water molecules. Then, we incorporate results from molecular-dynamics simulation in two different ways to an analytical diffusion-reaction model to obtain association and dissociation constants for di-mannose interaction with membrane. Finally, we verify our approach by predicting concentration dependence of di-mannose recognition at the membrane that is consistent with experiment. In conclusion, we provide a combined approach for the thermodynamics and kinetics of a weak ligand-binding system, which has broad implications across many different fields.
糖分子在细胞膜上的识别对于各种生理过程至关重要。然而,糖-膜相互作用的许多方面仍然未知。我们采用综合方法,将传统的分子动力学模拟与增强采样方法和分析模型相结合,以了解二甘露糖分子在磷脂双层系统中的热力学和动力学。我们观察到二甘露糖分子略微倾向于定位于水-磷脂界面。通过伞状采样,我们发现这种优先位置的自由能偏差仅为-0.42 kcal/mol,这解释了糖-膜相互作用的吸引和排斥机制的共存。使用两相模型准确估计水分子的绝对熵变表明,小的能量偏差是水分子有利熵变的结果。然后,我们以两种不同的方式将分子动力学模拟的结果纳入到一个分析扩散-反应模型中,以获得二甘露糖与膜相互作用的结合和解离常数。最后,我们通过预测二甘露糖在膜上识别的浓度依赖性来验证我们的方法,这与实验结果一致。总之,我们提供了一种针对弱配体结合系统的热力学和动力学的综合方法,该方法在许多不同领域具有广泛的应用。