Suppr超能文献

肌球蛋白纤维丝长度和同工型组成决定肌球蛋白纤维束中自我组织的收缩单位。

Thick filament length and isoform composition determine self-organized contractile units in actomyosin bundles.

机构信息

Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA.

出版信息

Biophys J. 2013 Feb 5;104(3):655-65. doi: 10.1016/j.bpj.2012.12.042.

Abstract

Diverse myosin II isoforms regulate contractility of actomyosin bundles in disparate physiological processes by variations in both motor mechanochemistry and the extent to which motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study the contractility of minimal actomyosin bundles formed in vitro by mixtures of F-actin and thick filaments of nonmuscle, smooth, and skeletal muscle myosin isoforms with varied length. Diverse myosin II isoforms guide the self-organization of distinct contractile units within in vitro bundles with shortening rates similar to those of in vivo myofibrils and stress fibers. The tendency to form contractile units increases with the thick filament length, resulting in a bundle shortening rate proportional to the length of constituent myosin thick filament. We develop a model that describes our data, providing a framework in which to understand how diverse myosin II isoforms regulate the contractile behaviors of disordered actomyosin bundles found in muscle and nonmuscle cells. These experiments provide insight into physiological processes that use dynamic regulation of thick filament length, such as smooth muscle contraction.

摘要

不同的肌球蛋白 II 同工型通过改变马达的机械化学性质和马达聚集到粗丝的程度来调节肌动球蛋白束在不同生理过程中的收缩性。虽然机械化学的作用已经得到很好的理解,但粗丝长度调节肌球蛋白收缩性的程度尚不清楚。在这里,我们研究了由非肌肉、平滑肌和骨骼肌肌球蛋白同工型的 F-肌动蛋白和粗丝混合物在体外形成的最小肌动球蛋白束的收缩性,这些粗丝具有不同的长度。不同的肌球蛋白 II 同工型指导着不同的收缩单位在体外束中的自组织,其缩短率与体内肌原纤维和应力纤维的缩短率相似。形成收缩单位的趋势随着粗丝长度的增加而增加,导致束的缩短率与组成肌球蛋白粗丝的长度成正比。我们开发了一个模型来描述我们的数据,为理解不同的肌球蛋白 II 同工型如何调节肌肉和非肌肉细胞中发现的无序肌动球蛋白束的收缩行为提供了一个框架。这些实验为使用粗丝长度的动态调节的生理过程提供了深入的了解,例如平滑肌收缩。

相似文献

2
Reconstitution of contractile actomyosin bundles.
Biophys J. 2011 Jun 8;100(11):2698-705. doi: 10.1016/j.bpj.2011.04.031.
3
F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex.
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20820-5. doi: 10.1073/pnas.1214753109. Epub 2012 Dec 3.
4
Regulating contractility of the actomyosin cytoskeleton by pH.
Cell Rep. 2012 Sep 27;2(3):433-9. doi: 10.1016/j.celrep.2012.08.014. Epub 2012 Sep 20.
6
Actin-facilitated assembly of smooth muscle myosin induces formation of actomyosin fibrils.
J Cell Biol. 1992 Jun;117(6):1223-30. doi: 10.1083/jcb.117.6.1223.
7
Self-organization of myosin II in reconstituted actomyosin bundles.
Biophys J. 2012 Sep 19;103(6):1265-74. doi: 10.1016/j.bpj.2012.08.028.
8
Microfilaments in cellular and developmental processes.
Science. 1971 Jan 15;171(3967):135-43. doi: 10.1126/science.171.3967.135.
9
Actomyosin sliding is attenuated in contractile biomimetic cortices.
Mol Biol Cell. 2014 Jun 15;25(12):1845-53. doi: 10.1091/mbc.E13-08-0450. Epub 2014 Apr 23.
10
Contractile units in disordered actomyosin bundles arise from F-actin buckling.
Phys Rev Lett. 2012 Jun 8;108(23):238107. doi: 10.1103/PhysRevLett.108.238107.

引用本文的文献

1
Engineering filamentous myosins for optical control of contractility.
bioRxiv. 2025 Aug 23:2025.08.19.666446. doi: 10.1101/2025.08.19.666446.
2
Impacts of structural properties of myosin II filaments on force generation.
Elife. 2025 Aug 13;14:RP105236. doi: 10.7554/eLife.105236.
3
β-adrenergic signaling modulates breast cancer cell mechanical behaviors through a RhoA-ROCK-myosin II axis.
iScience. 2025 May 15;28(6):112676. doi: 10.1016/j.isci.2025.112676. eCollection 2025 Jun 20.
4
The unique biology of catch muscles: insights into structure, function, and robotics innovations.
Front Bioeng Biotechnol. 2025 Apr 16;13:1478626. doi: 10.3389/fbioe.2025.1478626. eCollection 2025.
5
Structural domain in the Titin N2B-us region binds to FHL2 in a force-activation dependent manner.
Nat Commun. 2024 May 27;15(1):4496. doi: 10.1038/s41467-024-48828-7.
9
F-actin architecture determines constraints on myosin thick filament motion.
Nat Commun. 2022 Nov 16;13(1):7008. doi: 10.1038/s41467-022-34715-6.

本文引用的文献

1
Contractile units in disordered actomyosin bundles arise from F-actin buckling.
Phys Rev Lett. 2012 Jun 8;108(23):238107. doi: 10.1103/PhysRevLett.108.238107.
2
Force generation, transmission, and integration during cell and tissue morphogenesis.
Annu Rev Cell Dev Biol. 2011;27:157-84. doi: 10.1146/annurev-cellbio-100109-104027. Epub 2011 Jul 5.
3
Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle.
J Appl Physiol (1985). 2011 Sep;111(3):735-42. doi: 10.1152/japplphysiol.00114.2011. Epub 2011 Jun 9.
4
Reconstitution of contractile actomyosin bundles.
Biophys J. 2011 Jun 8;100(11):2698-705. doi: 10.1016/j.bpj.2011.04.031.
5
Preparation of complaint matrices for quantifying cellular contraction.
J Vis Exp. 2010 Dec 14(46):2173. doi: 10.3791/2173.
6
Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery.
Biophys J. 2010 Nov 3;99(9):2775-83. doi: 10.1016/j.bpj.2010.08.071.
7
Structural and functional insights into the Myosin motor mechanism.
Annu Rev Biophys. 2010;39:539-57. doi: 10.1146/annurev.biophys.050708.133751.
8
Non-muscle myosin II takes centre stage in cell adhesion and migration.
Nat Rev Mol Cell Biol. 2009 Nov;10(11):778-90. doi: 10.1038/nrm2786.
9
Sarcomere mechanics in capillary endothelial cells.
Biophys J. 2009 Sep 16;97(6):1578-85. doi: 10.1016/j.bpj.2009.07.017.
10
Mechanical integration of actin and adhesion dynamics in cell migration.
Annu Rev Cell Dev Biol. 2010;26:315-33. doi: 10.1146/annurev.cellbio.011209.122036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验