Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
J R Soc Interface. 2013 Feb 27;10(82):20121022. doi: 10.1098/rsif.2012.1022. Print 2013 May 6.
Higher order folding of chromatin fibre is mediated by interactions of the histone H4 N-terminal tail domains with neighbouring nucleosomes. Mechanistically, the H4 tails of one nucleosome bind to the acidic patch region on the surface of adjacent nucleosomes, causing fibre compaction. The functionality of the chromatin fibre can be modified by proteins that interact with the nucleosome. The co-structures of five different proteins with the nucleosome (LANA, IL-33, RCC1, Sir3 and HMGN2) recently have been examined by experimental and computational studies. Interestingly, each of these proteins displays steric, ionic and hydrogen bond complementarity with the acidic patch, and therefore will compete with each other for binding to the nucleosome. We first review the molecular details of each interface, focusing on the key non-covalent interactions that stabilize the protein-acidic patch interactions. We then propose a model in which binding of proteins to the nucleosome disrupts interaction of the H4 tail domains with the acidic patch, preventing the intrinsic chromatin folding pathway and leading to assembly of alternative higher order chromatin structures with unique biological functions.
染色质纤维的高级折叠由组蛋白 H4 N 端尾部与相邻核小体之间的相互作用介导。从机制上讲,一个核小体的 H4 尾部与相邻核小体表面的酸性斑区域结合,导致纤维紧缩。与核小体相互作用的蛋白质可以修饰染色质纤维的功能。最近通过实验和计算研究研究了五种不同蛋白质(LANA、IL-33、RCC1、Sir3 和 HMGN2)与核小体的共结构。有趣的是,这些蛋白质中的每一种都与酸性斑显示出空间、离子和氢键互补性,因此它们将相互竞争以与核小体结合。我们首先回顾每个界面的分子细节,重点介绍稳定蛋白质-酸性斑相互作用的关键非共价相互作用。然后,我们提出了一个模型,其中蛋白质与核小体的结合会破坏 H4 尾部与酸性斑的相互作用,阻止内在的染色质折叠途径,并导致具有独特生物学功能的替代高级染色质结构的组装。