Suppr超能文献

核小体酸性斑在调节高级染色质结构中的作用。

The role of the nucleosome acidic patch in modulating higher order chromatin structure.

机构信息

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.

出版信息

J R Soc Interface. 2013 Feb 27;10(82):20121022. doi: 10.1098/rsif.2012.1022. Print 2013 May 6.

Abstract

Higher order folding of chromatin fibre is mediated by interactions of the histone H4 N-terminal tail domains with neighbouring nucleosomes. Mechanistically, the H4 tails of one nucleosome bind to the acidic patch region on the surface of adjacent nucleosomes, causing fibre compaction. The functionality of the chromatin fibre can be modified by proteins that interact with the nucleosome. The co-structures of five different proteins with the nucleosome (LANA, IL-33, RCC1, Sir3 and HMGN2) recently have been examined by experimental and computational studies. Interestingly, each of these proteins displays steric, ionic and hydrogen bond complementarity with the acidic patch, and therefore will compete with each other for binding to the nucleosome. We first review the molecular details of each interface, focusing on the key non-covalent interactions that stabilize the protein-acidic patch interactions. We then propose a model in which binding of proteins to the nucleosome disrupts interaction of the H4 tail domains with the acidic patch, preventing the intrinsic chromatin folding pathway and leading to assembly of alternative higher order chromatin structures with unique biological functions.

摘要

染色质纤维的高级折叠由组蛋白 H4 N 端尾部与相邻核小体之间的相互作用介导。从机制上讲,一个核小体的 H4 尾部与相邻核小体表面的酸性斑区域结合,导致纤维紧缩。与核小体相互作用的蛋白质可以修饰染色质纤维的功能。最近通过实验和计算研究研究了五种不同蛋白质(LANA、IL-33、RCC1、Sir3 和 HMGN2)与核小体的共结构。有趣的是,这些蛋白质中的每一种都与酸性斑显示出空间、离子和氢键互补性,因此它们将相互竞争以与核小体结合。我们首先回顾每个界面的分子细节,重点介绍稳定蛋白质-酸性斑相互作用的关键非共价相互作用。然后,我们提出了一个模型,其中蛋白质与核小体的结合会破坏 H4 尾部与酸性斑的相互作用,阻止内在的染色质折叠途径,并导致具有独特生物学功能的替代高级染色质结构的组装。

相似文献

1
The role of the nucleosome acidic patch in modulating higher order chromatin structure.
J R Soc Interface. 2013 Feb 27;10(82):20121022. doi: 10.1098/rsif.2012.1022. Print 2013 May 6.
2
Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.
PLoS One. 2012;7(10):e47162. doi: 10.1371/journal.pone.0047162. Epub 2012 Oct 11.
3
Regulation of Nucleosome Stacking and Chromatin Compaction by the Histone H4 N-Terminal Tail-H2A Acidic Patch Interaction.
J Mol Biol. 2017 Jun 30;429(13):2075-2092. doi: 10.1016/j.jmb.2017.03.016. Epub 2017 Mar 16.
4
Histone H4 K16Q mutation, an acetylation mimic, causes structural disorder of its N-terminal basic patch in the nucleosome.
J Mol Biol. 2012 Aug 3;421(1):30-7. doi: 10.1016/j.jmb.2012.04.032. Epub 2012 May 7.
5
Targeting the Nucleosome Acidic Patch by Viral Proteins: Two Birds with One Stone?
mBio. 2022 Apr 26;13(2):e0173321. doi: 10.1128/mbio.01733-21. Epub 2022 Mar 28.
6
Beyond the Nucleosome: Nucleosome-Protein Interactions and Higher Order Chromatin Structure.
J Mol Biol. 2021 Mar 19;433(6):166827. doi: 10.1016/j.jmb.2021.166827. Epub 2021 Jan 16.
7
Heterochromatin protein Sir3 induces contacts between the amino terminus of histone H4 and nucleosomal DNA.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8495-500. doi: 10.1073/pnas.1300126110. Epub 2013 May 6.
8
A charged and contoured surface on the nucleosome regulates chromatin compaction.
Nat Struct Mol Biol. 2007 Nov;14(11):1105-7. doi: 10.1038/nsmb1334. Epub 2007 Oct 28.
9
10
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter-nucleosome Interaction.
Biophys J. 2017 Feb 7;112(3):450-459. doi: 10.1016/j.bpj.2016.11.015. Epub 2016 Dec 6.

引用本文的文献

1
Myeloperoxidase transforms chromatin into neutrophil extracellular traps.
Nature. 2025 Sep 17. doi: 10.1038/s41586-025-09523-9.
2
SIRT1 retention in elongating spermatids interferes with histone displacement by counteracting MOF-dependent H4K16 acetylation.
Front Cell Dev Biol. 2025 Aug 29;13:1524919. doi: 10.3389/fcell.2025.1524919. eCollection 2025.
4
Linker Histone H1.5 Contributes to Centromere Integrity in Human Cells.
bioRxiv. 2025 Jun 3:2025.06.03.657682. doi: 10.1101/2025.06.03.657682.
5
Structure and nucleic acid interactions of the S domain of the hepatitis delta virus small antigen.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2411890122. doi: 10.1073/pnas.2411890122. Epub 2025 May 5.
6
Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes.
Biochemistry. 2025 May 20;64(10):2138-2153. doi: 10.1021/acs.biochem.5c00114. Epub 2025 May 1.
7
Cryo-EM structures reveal the acetylation process of piccolo NuA4.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2414490122. doi: 10.1073/pnas.2414490122. Epub 2025 Mar 18.
8
Semisynthesis of Isomerized Histone H4 Reveals Robustness and Vulnerability of Chromatin toward Molecular Aging.
J Am Chem Soc. 2025 Feb 12;147(6):4952-4961. doi: 10.1021/jacs.4c14136. Epub 2025 Feb 2.
10
Epigenetic Regulation Via Electrical Forces.
Rev Physiol Biochem Pharmacol. 2025;187:251-272. doi: 10.1007/978-3-031-68827-0_15.

本文引用的文献

1
Regulation of the H4 tail binding and folding landscapes via Lys-16 acetylation.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17857-62. doi: 10.1073/pnas.1201805109. Epub 2012 Sep 17.
2
Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution.
Science. 2011 Nov 18;334(6058):977-82. doi: 10.1126/science.1210915.
3
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR.
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12283-8. doi: 10.1073/pnas.1105848108. Epub 2011 Jul 5.
4
Energy landscape analyses of disordered histone tails reveal special organization of their conformational dynamics.
J Am Chem Soc. 2011 May 18;133(19):7405-15. doi: 10.1021/ja1111964. Epub 2011 Apr 25.
5
Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation.
Phys Chem Chem Phys. 2011 Feb 21;13(7):2911-21. doi: 10.1039/c0cp01487g. Epub 2010 Dec 15.
6
The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association.
Nucleic Acids Res. 2011 Mar;39(5):1680-91. doi: 10.1093/nar/gkq900. Epub 2010 Nov 2.
7
Structure of RCC1 chromatin factor bound to the nucleosome core particle.
Nature. 2010 Sep 30;467(7315):562-6. doi: 10.1038/nature09321. Epub 2010 Aug 25.
8
RCC1 uses a conformationally diverse loop region to interact with the nucleosome: a model for the RCC1-nucleosome complex.
J Mol Biol. 2010 May 14;398(4):518-29. doi: 10.1016/j.jmb.2010.03.037. Epub 2010 Mar 27.
9
HMGNs, DNA repair and cancer.
Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):80-5. doi: 10.1016/j.bbagrm.2009.10.007. Epub 2009 Dec 8.
10
Regulation of chromatin structure and function by HMGN proteins.
Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):62-8. doi: 10.1016/j.bbagrm.2009.11.016. Epub 2009 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验