Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
J Neurosci. 2013 Feb 27;33(9):3765-79. doi: 10.1523/JNEUROSCI.4251-12.2013.
Transgenic mice that express mutant amyloid precursor protein (APPsi) using tet-Off vector systems provide an alternative model for assessing short- and long-term effects of Aβ-targeting therapies on phenotypes related to the deposition of Alzheimer-type amyloid. Here we use such a model, termed APPsi:tTA, to determine what phenotypes persist in mice with high amyloid burden after new production of APP/Aβ has been suppressed. We find that 12- to 13-month-old APPsi:tTA mice are impaired in cognitive tasks that assess short- and long-term memories. Acutely suppressing new APPsi/Aβ production produced highly significant improvements in performing short-term spatial memory tasks, which upon continued suppression translated to superior performance in more demanding tasks that assess long-term spatial memory and working memory. Deficits in episodic-like memory and cognitive flexibility, however, were more persistent. Arresting mutant APPsi production caused a rapid decline in the brain levels of soluble APP ectodomains, full-length APP, and APP C-terminal fragments. As expected, amyloid deposits persisted after new APP/Aβ production was inhibited, whereas, unexpectedly, we detected persistent pools of solubilizable, relatively mobile, Aβ42. Additionally, we observed persistent levels of Aβ-immunoreactive entities that were of a size consistent with SDS-resistant oligomeric assemblies. Thus, in this model with significant amyloid pathology, a rapid amelioration of cognitive deficits was observed despite persistent levels of oligomeric Aβ assemblies and low, but detectable solubilizable Aβ42 peptides. These findings implicate complex relationships between accumulating Aβ and activities of APP, soluble APP ectodomains, and/or APP C-terminal fragments in mediating cognitive deficits in this model of amyloidosis.
表达突变淀粉样前体蛋白(APPsi)的转基因小鼠使用 tet-Off 载体系统提供了一种替代模型,用于评估 Aβ 靶向治疗对与阿尔茨海默病淀粉样沉积相关表型的短期和长期影响。在这里,我们使用这种称为 APPsi:tTA 的模型来确定在新产生的 APP/Aβ 被抑制后,具有高淀粉样蛋白负担的小鼠中哪些表型仍然存在。我们发现,12 至 13 个月大的 APPsi:tTA 小鼠在评估短期和长期记忆的认知任务中受损。急性抑制新的 APPsi/Aβ 产生可显著改善短期空间记忆任务的表现,而持续抑制则可转化为评估长期空间记忆和工作记忆的更具挑战性任务的优异表现。然而,情景记忆和认知灵活性的缺陷更为持久。阻止突变 APPsi 的产生导致脑可溶性 APP 外显子、全长 APP 和 APP C 端片段的水平迅速下降。正如预期的那样,在抑制新的 APP/Aβ 产生后,淀粉样蛋白沉积仍然存在,而出乎意料的是,我们检测到可溶性、相对移动的 Aβ42 的持续存在。此外,我们观察到与 SDS 抗性寡聚体组装一致的大小一致的可溶 Aβ 免疫反应性实体的持续存在。因此,在这个具有显著淀粉样蛋白病理学的模型中,尽管存在寡聚 Aβ 组装物的持续水平和低但可检测的可溶性 Aβ42 肽,但观察到认知缺陷的快速改善。这些发现表明在淀粉样变性的这种模型中,Aβ 的积累与 APP、可溶性 APP 外显子和/或 APP C 端片段的活性之间存在复杂的关系,从而介导认知缺陷。