Cheng Feixiong, Li Weihua, Zhou Yadi, Li Jie, Shen Jie, Lee Philip W, Tang Yun
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
Mol Biosyst. 2013 Jun;9(6):1316-25. doi: 10.1039/c3mb25309k. Epub 2013 Mar 1.
New technologies for systems-level determinants of human exposure to drugs, industrial chemicals, pesticides, and other environmental agents provide an invaluable opportunity to extend the understanding of human health and potential environmental hazards. We report here the development of a new computational-systems toxicology framework, called predictive toxicogenomics-derived models (PTDMs). PTDMs integrate three networks of chemical-gene interactions (CGIs), chemical-disease associations (CDAs) and gene-disease associations (GDAs) to infer chemical hazard profiles, identify exposure data gaps and to incorporate genes and disease networks into chemical safety evaluations. Three comprehensive networks addressing CGI, CDA and GDA extracted from the comparative toxicogenomics database (CTD) were constructed. The areas under the receiver operating characteristics curve ranged from 0.85 to 0.97 and were yielded using our methodology using a 10-fold cross validation by a simulation carried out 100 times. As the illustrated examples show, we predicted new potential target genes and diseases for bisphenol A and aspirin. The molecular hypothesis and experimental evidence from published literature for these predictions were provided. The results demonstrated that our method has potential applications for chemical profiling in human health exposure and environmental hazard assessment.
用于确定人类接触药物、工业化学品、农药及其他环境介质的系统层面决定因素的新技术,为拓展对人类健康及潜在环境危害的理解提供了宝贵契机。我们在此报告一种名为预测性毒理基因组学衍生模型(PTDMs)的新计算系统毒理学框架的开发情况。PTDMs整合了化学-基因相互作用(CGIs)、化学-疾病关联(CDAs)和基因-疾病关联(GDAs)这三个网络,以推断化学危害概况、识别暴露数据缺口,并将基因和疾病网络纳入化学安全性评估。构建了从比较毒理基因组学数据库(CTD)中提取的涉及CGI、CDA和GDA的三个综合网络。通过我们的方法,采用10倍交叉验证并进行100次模拟,得到的受试者工作特征曲线下面积范围为0.85至0.97。如示例所示,我们预测了双酚A和阿司匹林的新潜在靶基因及疾病。并提供了来自已发表文献的针对这些预测的分子假说和实验证据。结果表明,我们的方法在人类健康暴露的化学概况分析及环境危害评估中具有潜在应用价值。