Suppr超能文献

多 sclerosis 中的微阵列基因表达谱分析与生物信息学相结合。

Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis.

机构信息

Department of Neurology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China.

出版信息

Mol Biol Rep. 2013 May;40(5):3731-7. doi: 10.1007/s11033-012-2449-3. Epub 2013 Mar 1.

Abstract

Multiple sclerosis (MS) is the most prevalent demyelinating disease and the principal cause of neurological disability in young adults. Recent microarray gene expression profiling studies have identified several genetic variants contributing to the complex pathogenesis of MS, however, expressional and functional studies are still required to further understand its molecular mechanism. The present study aimed to analyze the molecular mechanism of MS using microarray analysis combined with bioinformatics techniques. We downloaded the gene expression profile of MS from Gene Expression Omnibus (GEO) and analysed the microarray data using the differentially coexpressed genes (DCGs) and links package in R and Database for Annotation, Visualization and Integrated Discovery. The regulatory impact factor (RIF) algorithm was used to measure the impact factor of transcription factor. A total of 1,297 DCGs between MS patients and healthy controls were identified. Functional annotation indicated that these DCGs were associated with immune and neurological functions. Furthermore, the RIF result suggested that IKZF1, BACH1, CEBPB, EGR1, FOS may play central regulatory roles in controlling gene expression in the pathogenesis of MS. Our findings confirm the presence of multiple molecular alterations in MS and indicate the possibility for identifying prognostic factors associated with MS pathogenesis.

摘要

多发性硬化症(MS)是最常见的脱髓鞘疾病,也是年轻人神经功能障碍的主要原因。最近的基因表达谱微阵列研究已经确定了几个遗传变异有助于 MS 的复杂发病机制,但仍需要表达和功能研究来进一步了解其分子机制。本研究旨在使用微阵列分析结合生物信息学技术分析 MS 的分子机制。我们从基因表达综合数据库(GEO)下载了 MS 的基因表达谱,并使用 R 和数据库的差异共表达基因(DCGs)和链接包进行微阵列数据分析用于注释、可视化和综合发现。调控影响因子(RIF)算法用于测量转录因子的影响因子。在 MS 患者和健康对照者之间共鉴定出 1297 个 DCGs。功能注释表明,这些 DCGs 与免疫和神经功能有关。此外,RIF 结果表明,IKZF1、BACH1、CEBPB、EGR1、FOS 可能在 MS 发病机制中控制基因表达方面发挥核心调节作用。我们的研究结果证实了 MS 中存在多种分子改变,并表明有可能确定与 MS 发病机制相关的预后因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验