Suppr超能文献

多发性硬化症血液候选基因标志物的鉴定及新的 7 基因诊断模型。

Identification of blood-derived candidate gene markers and a new 7-gene diagnostic model for multiple sclerosis.

机构信息

Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.

出版信息

Biol Res. 2021 Apr 1;54(1):12. doi: 10.1186/s40659-021-00334-6.

Abstract

BACKGROUND

Multiple sclerosis (MS) is a central nervous system disease with a high disability rate. Modern molecular biology techniques have identified a number of key genes and diagnostic markers to MS, but the etiology and pathogenesis of MS remain unknown.

RESULTS

In this study, the integration of three peripheral blood mononuclear cell (PBMC) microarray datasets and one peripheral blood T cells microarray dataset allowed comprehensive network and pathway analyses of the biological functions of MS-related genes. Differential expression analysis identified 78 significantly aberrantly expressed genes in MS, and further functional enrichment analysis showed that these genes were associated with innate immune response-activating signal transduction (p = 0.0017), neutrophil mediated immunity (p = 0.002), positive regulation of innate immune response (p = 0.004), IL-17 signaling pathway (p < 0.035) and other immune-related signaling pathways. In addition, a network of MS-specific protein-protein interactions (PPI) was constructed based on differential genes. Subsequent analysis of network topology properties identified the up-regulated CXCR4, ITGAM, ACTB, RHOA, RPS27A, UBA52, and RPL8 genes as the hub genes of the network, and they were also potential biomarkers of MS through Rap1 signaling pathway or leukocyte transendothelial migration. RT-qPCR results demonstrated that CXCR4 was obviously up-regulated, while ACTB, RHOA, and ITGAM were down-regulated in MS patient PBMC in comparison with normal samples. Finally, support vector machine was employed to establish a diagnostic model of MS with a high prediction performance in internal and external datasets (mean AUC = 0.97) and in different chip platform datasets (AUC = (0.93).

CONCLUSION

This study provides new understanding for the etiology/pathogenesis of MS, facilitating an early identification and prediction of MS.

摘要

背景

多发性硬化症(MS)是一种中枢神经系统疾病,其致残率较高。现代分子生物学技术已经确定了许多与 MS 相关的关键基因和诊断标志物,但 MS 的病因和发病机制仍不清楚。

结果

在这项研究中,整合了三个外周血单核细胞(PBMC)微阵列数据集和一个外周血 T 细胞微阵列数据集,对 MS 相关基因的生物学功能进行了全面的网络和途径分析。差异表达分析鉴定出 MS 中 78 个显著异常表达的基因,进一步的功能富集分析表明,这些基因与先天免疫反应激活信号转导(p=0.0017)、中性粒细胞介导的免疫(p=0.002)、先天免疫反应的正调控(p=0.004)、IL-17 信号通路(p<0.035)和其他免疫相关信号通路有关。此外,还基于差异基因构建了 MS 特异性蛋白质-蛋白质相互作用(PPI)网络。随后对网络拓扑性质的分析确定了上调的 CXCR4、ITGAM、ACTB、RHOA、RPS27A、UBA52 和 RPL8 基因作为网络的枢纽基因,它们还通过 Rap1 信号通路或白细胞跨内皮迁移成为 MS 的潜在生物标志物。RT-qPCR 结果表明,与正常样本相比,MS 患者 PBMC 中的 CXCR4 明显上调,而 ACTB、RHOA 和 ITGAM 下调。最后,支持向量机被用于建立 MS 的诊断模型,该模型在内部和外部数据集(平均 AUC=0.97)以及不同芯片平台数据集(AUC=(0.93)中具有较高的预测性能。

结论

本研究为 MS 的病因/发病机制提供了新的认识,有助于对 MS 进行早期识别和预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f385/8015180/37ec3b979cf4/40659_2021_334_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验