Suppr超能文献

从“差异表达”到“差异网络”——疾病中失调调控网络的识别。

From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in diseases.

机构信息

CRS4 Bioinformatica, Polaris Edificio 3, Località Piscina Manna, 09010 Pula (CA), Italy.

出版信息

Trends Genet. 2010 Jul;26(7):326-33. doi: 10.1016/j.tig.2010.05.001.

Abstract

Understanding diseases requires identifying the differences between healthy and affected tissues. Gene expression data have revolutionized the study of diseases by making it possible to simultaneously consider thousands of genes. The identification of disease-associated genes requires studying the genes in the context of the regulatory systems they are involved in. A major goal is to identify specific regulatory networks that are dysfunctional in a given disease state. Although we still have not reached a stage where the elucidation of differential regulatory networks is commonly feasible, recent advances have described the first steps towards this goal - the identification of differential coexpression networks. This review describes the shift from differential gene expression to differential networking and outlines how this shift will affect the study of the genetic basis of disease.

摘要

理解疾病需要识别健康组织和病变组织之间的差异。基因表达数据通过使同时考虑数千个基因成为可能,从而彻底改变了疾病的研究方式。识别与疾病相关的基因需要在其参与的调控系统的背景下研究基因。一个主要目标是确定在特定疾病状态下功能失调的特定调控网络。尽管我们尚未达到普遍可行的阐明差异调控网络的阶段,但最近的进展已经描述了朝着这一目标迈出的第一步 - 识别差异共表达网络。这篇综述描述了从差异基因表达到差异网络的转变,并概述了这种转变将如何影响疾病遗传基础的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验