Suppr超能文献

自然图像中材料识别的速度和准确性。

The speed and accuracy of material recognition in natural images.

作者信息

Wiebel Christiane B, Valsecchi Matteo, Gegenfurtner Karl R

机构信息

Fachbereich 06, Psychologie und Sportwissenschaft, Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Otto-Behaghel-Strasse 10F, 35394 Giessen, Germany.

出版信息

Atten Percept Psychophys. 2013 Jul;75(5):954-66. doi: 10.3758/s13414-013-0436-y.

Abstract

We studied the time course of material categorization in natural images relative to superordinate and basic-level object categorization, using a backward-masking paradigm. We manipulated several low-level features of the images-including luminance, contrast, and color-to assess their potential contributions. The results showed that the speed of material categorization was roughly comparable to the speed of basic-level object categorization, but slower than that of superordinate object categorization. The performance seemed to be crucially mediated by low-level factors, with color leading to a solid increase in performance for material categorization. At longer presentation durations, material categorization was less accurate than both types of object categorization. Taken together, our results show that material categorization can be as fast as basic-level object categorization, but is less accurate.

摘要

我们使用后向掩蔽范式研究了自然图像中材料分类相对于上级和基本层次物体分类的时间进程。我们操纵了图像的几个低级特征,包括亮度、对比度和颜色,以评估它们的潜在贡献。结果表明,材料分类的速度大致与基本层次物体分类的速度相当,但比上级物体分类的速度慢。性能似乎关键地由低级因素介导,颜色导致材料分类的性能显著提高。在较长的呈现持续时间下,材料分类比两种物体分类都不准确。综合来看,我们的结果表明,材料分类可以和基本层次物体分类一样快,但准确性较低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验