Pontificia Universidad Católica de Chile, Santiago, Chile.
PLoS One. 2013;8(2):e55664. doi: 10.1371/journal.pone.0055664. Epub 2013 Feb 15.
Paralytic shellfish poisoning toxins (PSTs) are a family of more than 30 natural alkaloids synthesized by dinoflagellates and cyanobacteria whose toxicity in animals is mediated by voltage-gated Na(+) channel blocking. The export of PST analogues may be through SxtF and SxtM, two putative MATE (multidrug and toxic compound extrusion) family transporters encoded in PSTs biosynthetic gene cluster (sxt). sxtM is present in every sxt cluster analyzed; however, sxtF is only present in the Cylindrospermopsis-Raphidiopsis clade. These transporters are energetically coupled with an electrochemical gradient of proton (H(+)) or sodium (Na(+)) ions across membranes. Because the functional role of PSTs remains unknown and methods for genetic manipulation in PST-producing organisms have not yet been developed, protein structure analyses will allow us to understand their function. By analyzing the sxt cluster of eight PST-producing cyanobacteria, we found no correlation between the presence of sxtF or sxtM and a specific PSTs profile. Phylogenetic analyses of SxtF/M showed a high conservation of SxtF in the Cylindrospermopsis-Raphidiopsis clade, suggesting conserved substrate affinity. Two domains involved in Na(+) and drug recognition from NorM proteins (MATE family) of Vibrio parahaemolyticus and V. cholerae are present in SxtF/M. The Na(+) recognition domain was conserved in both SxtF/M, indicating that Na(+) can maintain the role as a cation anti-transporter. Consensus motifs for toxin binding differed between SxtF and SxtM implying differential substrate binding. Through protein modeling and docking analysis, we found that there is no marked affinity between the recognition domain and a specific PST analogue. This agrees with our previous results of PST export in R. brookii D9, where we observed that the response to Na(+) incubation was similar to different analogues. These results reassert the hypothesis regarding the involvement of Na(+) in toxin export, as well as the motifs L(398)XGLQD(403) (SxtM) and L(390)VGLRD(395) (SxtF) in toxin recognition.
麻痹性贝类毒素 (PSTs) 是一类由甲藻和蓝藻合成的超过 30 种天然生物碱,其在动物中的毒性是通过电压门控 Na(+)通道阻断介导的。 PST 类似物的外排可能通过 SxtF 和 SxtM 进行,SxtF 和 SxtM 是 PST 生物合成基因簇 (sxt) 中编码的两个假定 MATE(多药和毒性化合物外排)家族转运蛋白。sxtM 存在于分析的每个 sxt 簇中;然而,sxtF 仅存在于 Cylindrospermopsis-Raphidiopsis 分支中。这些转运蛋白与质子 (H(+)) 或钠离子 (Na(+)) 电化学梯度在膜内能量偶联。由于 PST 的功能作用仍然未知,并且尚未开发 PST 产生生物的遗传操作方法,因此蛋白质结构分析将使我们能够了解它们的功能。通过分析 8 种产生 PST 的蓝藻的 sxt 簇,我们没有发现 sxtF 或 sxtM 的存在与特定 PSTs 谱之间存在相关性。SxtF/M 的系统发育分析表明,Cylindrospermopsis-Raphidiopsis 分支中的 SxtF 高度保守,表明保守的底物亲和力。来自副溶血弧菌和霍乱弧菌的 NorM 蛋白 (MATE 家族) 的两个与 Na(+) 和药物识别相关的结构域存在于 SxtF/M 中。Na(+) 识别结构域在 SxtF/M 中均保守,表明 Na(+) 可以维持阳离子反转运体的作用。SxtF 和 SxtM 之间的毒素结合保守基序不同,暗示了不同的底物结合。通过蛋白质建模和对接分析,我们发现识别结构域与特定 PST 类似物之间没有明显的亲和力。这与我们之前在 R. brookii D9 中观察到的 PST 外排结果一致,我们发现对 Na(+) 孵育的反应与不同类似物相似。这些结果再次支持了 Na(+) 参与毒素外排的假设,以及毒素识别中的基序 L(398)XGLQD(403) (SxtM) 和 L(390)VGLRD(395) (SxtF)。